During the course of the years, lots of methods, aimed to detect the set of operating parameters (e.g., dosing times, initial reactor temperature, coolant temperature, etc..) at which such a dangerous phenomenon can occur, have been developed. Moreover, in the last few years, the attention has been posed on safe process optimization, that is how to compute the set of operating parameters able to ensure high reactor productivity and, contextually, safe conditions. To achieve this goal, with particular reference to industrial semibatch synthesis carried out using both isothermal and isoperibolic temperature control mode, a dedicated optimization software has been implemented. Such a software identifies the optimum set of operating parameters using a topological criterion able to bind the so-called “QFS region” (where reactants accumulation is low and all the heat released is readily removed by the cooling equipment) and, then, iteratively searching for the constrained system optimum. To manage the software, only a few experimental parameters are needed; essentially: heat(s) of reaction, apparent system kinetics (Arrhenius law), threshold temperature(s) above which unwanted side reactions, decompositions or boiling phenomena are triggered, heat transfer coefficients and reactants heat capacities. Such parameters can be obtained using simple calorimetric techniques (DSC, ARC, RC1, etc..). Over the optimization section, the software posses a simulation section where both normal and upset operating conditions (such as pumps failure and external fire) can be tested.
Safe optimization of potentially runaway processes using topology based tools and software
DERUDI, MARCO;ROTA, RENATO;
2012-01-01
Abstract
During the course of the years, lots of methods, aimed to detect the set of operating parameters (e.g., dosing times, initial reactor temperature, coolant temperature, etc..) at which such a dangerous phenomenon can occur, have been developed. Moreover, in the last few years, the attention has been posed on safe process optimization, that is how to compute the set of operating parameters able to ensure high reactor productivity and, contextually, safe conditions. To achieve this goal, with particular reference to industrial semibatch synthesis carried out using both isothermal and isoperibolic temperature control mode, a dedicated optimization software has been implemented. Such a software identifies the optimum set of operating parameters using a topological criterion able to bind the so-called “QFS region” (where reactants accumulation is low and all the heat released is readily removed by the cooling equipment) and, then, iteratively searching for the constrained system optimum. To manage the software, only a few experimental parameters are needed; essentially: heat(s) of reaction, apparent system kinetics (Arrhenius law), threshold temperature(s) above which unwanted side reactions, decompositions or boiling phenomena are triggered, heat transfer coefficients and reactants heat capacities. Such parameters can be obtained using simple calorimetric techniques (DSC, ARC, RC1, etc..). Over the optimization section, the software posses a simulation section where both normal and upset operating conditions (such as pumps failure and external fire) can be tested.File | Dimensione | Formato | |
---|---|---|---|
14-Mo4-4_-_Derudi.pdf
Accesso riservato
:
Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione
444.44 kB
Formato
Adobe PDF
|
444.44 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.