In the past, with vertically integrate utilities, Optimal Reactive Power Flow (ORPF) procedures were designed to minimize power system losses, keeping the voltage profile in an acceptable range. Nowadays, in the market environment, a new formulation of the ORPF, aimed at the system security maximization, is necessary. In particular, as congestions and overloads are usually taken into account by the energy market rules, voltage security could become the main goal of ORPFs. Voltage problems are caused by the increase in power transfer among areas of interconnected systems, by the lack of reactive power support and by the increasing limitations of transmission networks. In this paper, an analysis of several ORPF Objective Functions (OFs) is reported, where the goal considered is the network security maximization. To solve the optimization problem for the considered OFs, a Genetic Algorithm (GA) approach has been adopted, together with a particular formulation of the Power Flow (PF) taking into account the Secondary Voltage Regulation (SVR). Tests are performed on a detailed model of the Italian power system, comparing the results in terms of system losses, reactive power required, loadability limits and voltage collapse indices. Furthermore, the improvements achievable with the adoption of the SVR in the new market environment have been investigated.

A GA approach to compare ORPF objective functions including Secondary Voltage Regulation

BERIZZI, ALBERTO;BOVO, CRISTIAN;MERLO, MARCO;DELFANTI, MAURIZIO
2012

Abstract

In the past, with vertically integrate utilities, Optimal Reactive Power Flow (ORPF) procedures were designed to minimize power system losses, keeping the voltage profile in an acceptable range. Nowadays, in the market environment, a new formulation of the ORPF, aimed at the system security maximization, is necessary. In particular, as congestions and overloads are usually taken into account by the energy market rules, voltage security could become the main goal of ORPFs. Voltage problems are caused by the increase in power transfer among areas of interconnected systems, by the lack of reactive power support and by the increasing limitations of transmission networks. In this paper, an analysis of several ORPF Objective Functions (OFs) is reported, where the goal considered is the network security maximization. To solve the optimization problem for the considered OFs, a Genetic Algorithm (GA) approach has been adopted, together with a particular formulation of the Power Flow (PF) taking into account the Secondary Voltage Regulation (SVR). Tests are performed on a detailed model of the Italian power system, comparing the results in terms of system losses, reactive power required, loadability limits and voltage collapse indices. Furthermore, the improvements achievable with the adoption of the SVR in the new market environment have been investigated.
Genetic Algorithms, Secondary voltage control, Loadability margin, Optimal Reactive Power Flow, Voltage security
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0378779611002811-main.pdf

Accesso riservato

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 624.45 kB
Formato Adobe PDF
624.45 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11311/666661
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 10
social impact