Diffuse optical tomography (DOT) and Fluorescence mediated tomography (FMT) are powerful in-vivo optical imaging techniques but they are affected by long acquisition and computational times. Recently, the use of structured light has been proposed in order to reduce the acquisition time and also the computational time of the inverse problem. Additionally, it has been proposed to compress the measured data set to reduce the reconstruction time. Here we present our experimental approach, describing the instrument for structured illumination and wide field detection and we discuss the advantages to use a finite elements based approach. Then, we introduce the use of spatial wavelets. Our method is based on the projection of a small number of wavelet patterns (Haar and Battle-Lemarie wavelets). The detected images are wavelet transformed and the information content is compressed to achieve fast 3D reconstruction. Experimental results are presented, showing fast reconstruction of complex absorbing/fluorescent objects in thick diffusive samples. Implications for fast small animal imaging are discussed.

Novel approaches based on structured light for fast diffuse optical tomography

BASSI, ANDREA;DUCROS, NICOLAS;D'ANDREA, COSIMO;VALENTINI, GIANLUCA;
2011-01-01

Abstract

Diffuse optical tomography (DOT) and Fluorescence mediated tomography (FMT) are powerful in-vivo optical imaging techniques but they are affected by long acquisition and computational times. Recently, the use of structured light has been proposed in order to reduce the acquisition time and also the computational time of the inverse problem. Additionally, it has been proposed to compress the measured data set to reduce the reconstruction time. Here we present our experimental approach, describing the instrument for structured illumination and wide field detection and we discuss the advantages to use a finite elements based approach. Then, we introduce the use of spatial wavelets. Our method is based on the projection of a small number of wavelet patterns (Haar and Battle-Lemarie wavelets). The detected images are wavelet transformed and the information content is compressed to achieve fast 3D reconstruction. Experimental results are presented, showing fast reconstruction of complex absorbing/fluorescent objects in thick diffusive samples. Implications for fast small animal imaging are discussed.
2011
Proc. of SPIE - The International Society for Optical Engineering
9780819484338
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/663738
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 1
social impact