Persons suffering from motor disorders have limited possibilities for communicating and normally require assistive technologies to fulfill this primary need. Promising means of providing basic communication abilities to subjects affected by severe motor impairments include brain-computer interfaces (BCIs), that is, systems that directly translate brain signals into device commands, bypassing any muscle or nerve mediation. To date, the use of BCIs for effective verbal communication is yet an open issue, primarily due to the low rates of information transfer that can be achieved with this technology. Still, performance of BCI spelling applications could be considerably improved by a smart user interface design and by the adoption of natural language processing (NLP) techniques for text prediction. The objective of this work is to suggest an approach and a user interface for BCI spelling applications combining state-of-the-art BCI and NLP techniques to maximize the overall communication rate of the system. The BCI paradigm adopted is motor imagery, that is, when the subject imagines moving a certain part of the body, he/she produces modifications to specific brain rhythms that are detected in real-time through an electroencephalogram and translated into commands for a spelling application. By maximizing the overall communication rate, our approach is twofold: on one hand, we maximize the information transfer rate from the control signal, on the other hand, we optimize the way this information is employed for the purpose of verbal communication. The achieved results are satisfactory and comparable with the latest works reported in literature on motor-imagery BCI spellers. For the three subjects tested, we obtained a spelling rate of respectively 3 char/min, 2.7 char/min, and 2 char/min.

A predictive speller controlled by a brain-computer interface based on motor imagery

TEDESCO, ROBERTO;SBATTELLA, LICIA;MATTEUCCI, MATTEO
2012-01-01

Abstract

Persons suffering from motor disorders have limited possibilities for communicating and normally require assistive technologies to fulfill this primary need. Promising means of providing basic communication abilities to subjects affected by severe motor impairments include brain-computer interfaces (BCIs), that is, systems that directly translate brain signals into device commands, bypassing any muscle or nerve mediation. To date, the use of BCIs for effective verbal communication is yet an open issue, primarily due to the low rates of information transfer that can be achieved with this technology. Still, performance of BCI spelling applications could be considerably improved by a smart user interface design and by the adoption of natural language processing (NLP) techniques for text prediction. The objective of this work is to suggest an approach and a user interface for BCI spelling applications combining state-of-the-art BCI and NLP techniques to maximize the overall communication rate of the system. The BCI paradigm adopted is motor imagery, that is, when the subject imagines moving a certain part of the body, he/she produces modifications to specific brain rhythms that are detected in real-time through an electroencephalogram and translated into commands for a spelling application. By maximizing the overall communication rate, our approach is twofold: on one hand, we maximize the information transfer rate from the control signal, on the other hand, we optimize the way this information is employed for the purpose of verbal communication. The achieved results are satisfactory and comparable with the latest works reported in literature on motor-imagery BCI spellers. For the three subjects tested, we obtained a spelling rate of respectively 3 char/min, 2.7 char/min, and 2 char/min.
2012
INF
File in questo prodotto:
File Dimensione Formato  
tochi.pdf

Accesso riservato

: Pre-Print (o Pre-Refereeing)
Dimensione 2.24 MB
Formato Adobe PDF
2.24 MB Adobe PDF   Visualizza/Apri
tochi appendix.pdf

Accesso riservato

: Pre-Print (o Pre-Refereeing)
Dimensione 3.48 MB
Formato Adobe PDF
3.48 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/663452
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 32
  • ???jsp.display-item.citation.isi??? 25
social impact