A generalized model for colloidal stability has been validated against experimentally measured values of Fuchs stability ratio and critical coagulation concentration (ccc) for electrolytes with mono- or divalent cation, i.e., potassium chloride and magnesium chloride, respectively. Besides the classical DLVO theory, the generalized model accounts for the interplay between colloidal interactions and the association of cations with the particles surface charge groups. The model parameters are either obtained or estimated purely on the basis of independent information available in the literature. For the monovalent salt, the predictions agree well with literature experimental data, forecasting both the ccc values and stability ratios quantitatively. For the divalent salt the predictions for large values of the stability ratio tend to deviate from the experimental data produced in this work, but it is noted that the onset of stability, i.e., the ccc, and small stability ratios are correctly predicted. Moreover, a comparison of the above results with those neglecting the effect of counterion association with the particles surface charge groups indicates that the latter substantially overestimates stability ratios in the presence of high salt concentration in the case of the monovalent salt, and leads to unrealistic large values of the ccc for the divalent salt. Including the association of cations with the particles surface charge groups can explain the relatively low values of experimental ccc for divalent salts compared to the theoretical predictions by the classical DLVO theory neglecting ion association, which is a point of interest in industrial coagulation processes.

Role of Counterion Association in Colloidal Stability

MORBIDELLI, MASSIMO
2009-01-01

Abstract

A generalized model for colloidal stability has been validated against experimentally measured values of Fuchs stability ratio and critical coagulation concentration (ccc) for electrolytes with mono- or divalent cation, i.e., potassium chloride and magnesium chloride, respectively. Besides the classical DLVO theory, the generalized model accounts for the interplay between colloidal interactions and the association of cations with the particles surface charge groups. The model parameters are either obtained or estimated purely on the basis of independent information available in the literature. For the monovalent salt, the predictions agree well with literature experimental data, forecasting both the ccc values and stability ratios quantitatively. For the divalent salt the predictions for large values of the stability ratio tend to deviate from the experimental data produced in this work, but it is noted that the onset of stability, i.e., the ccc, and small stability ratios are correctly predicted. Moreover, a comparison of the above results with those neglecting the effect of counterion association with the particles surface charge groups indicates that the latter substantially overestimates stability ratios in the presence of high salt concentration in the case of the monovalent salt, and leads to unrealistic large values of the ccc for the divalent salt. Including the association of cations with the particles surface charge groups can explain the relatively low values of experimental ccc for divalent salts compared to the theoretical predictions by the classical DLVO theory neglecting ion association, which is a point of interest in industrial coagulation processes.
2009
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/658826
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact