Hydraulic stability is one of the key problems during the design stage of hydraulic turbines. Despite of modern computational tools that help to define dangerous operating conditions and optimize runner design, hydraulic instabilities may fortuitously arise during the turbine life, as a consequence of variable and different operating conditions at which a hydraulic turbine can be subject. In general, the presence of unsteady flow reveals itself in two different ways: at small flow rate, the swirling flow in the draft tube conical inlet occupies a large portion of the inlet and causes a strong helical vortex rope; at large flow rate conditions the unsteady flow starts midway and causes a breakdownlike vortex bubble, followed by weak helical waves. In any case, hydraulic instability causes mechanical effects on the runner, on the whole turbine and on the draft tube, which may eventually produce severe damages on the turbine unit and whose most evident symptoms are vibrations. This notwithstanding, condition monitoring systems seldom are installed on this purpose in hydraulic power plants and no examples are reported in literature about the use of modelbased methods to detect hydraulic instability onset. In this paper, by taking the advantage of a testing campaign performed during the commissioning of a 23 MW Kaplan hydraulic turbine unit, a rotordynamic model-based method is proposed. The turbine was equipped by proximity and vibration velocity probes, that allowed measuring lateral and axial vibrations of the shaft-line, under many different operating conditions, including also some off-design ones. The turbine mechanical model, realized by means of finite beam elements and considering lateral and axial degrees of freedom, is used to predict turbine unit response to the unsteady flow. Mechanical system response is then compared to the measured one and the possibility to detect instability onset, especially in real-time, is discussed.

DETECTION OF UNSTEADY FLOW IN A KAPLAN HYDRAULIC TURBINE USING MACHINE MECHANICAL MODEL AND ROTOR MEASURED VIBRATIONS

PENNACCHI, PAOLO EMILIO LINO MARIA;VANIA, ANDREA TOMMASO;CHATTERTON, STEVEN;TANZI, EZIO
2012-01-01

Abstract

Hydraulic stability is one of the key problems during the design stage of hydraulic turbines. Despite of modern computational tools that help to define dangerous operating conditions and optimize runner design, hydraulic instabilities may fortuitously arise during the turbine life, as a consequence of variable and different operating conditions at which a hydraulic turbine can be subject. In general, the presence of unsteady flow reveals itself in two different ways: at small flow rate, the swirling flow in the draft tube conical inlet occupies a large portion of the inlet and causes a strong helical vortex rope; at large flow rate conditions the unsteady flow starts midway and causes a breakdownlike vortex bubble, followed by weak helical waves. In any case, hydraulic instability causes mechanical effects on the runner, on the whole turbine and on the draft tube, which may eventually produce severe damages on the turbine unit and whose most evident symptoms are vibrations. This notwithstanding, condition monitoring systems seldom are installed on this purpose in hydraulic power plants and no examples are reported in literature about the use of modelbased methods to detect hydraulic instability onset. In this paper, by taking the advantage of a testing campaign performed during the commissioning of a 23 MW Kaplan hydraulic turbine unit, a rotordynamic model-based method is proposed. The turbine was equipped by proximity and vibration velocity probes, that allowed measuring lateral and axial vibrations of the shaft-line, under many different operating conditions, including also some off-design ones. The turbine mechanical model, realized by means of finite beam elements and considering lateral and axial degrees of freedom, is used to predict turbine unit response to the unsteady flow. Mechanical system response is then compared to the measured one and the possibility to detect instability onset, especially in real-time, is discussed.
2012
Proceedings of the ASME Turbo Expo
9780791844731
Kaplan turbine; unsteady flow; rotor model; vibration
File in questo prodotto:
File Dimensione Formato  
GT2012 - DETECTION OF UNSTEADY FLOW IN A KAPLAN HYDRAULIC TURBINE USING.pdf

Accesso riservato

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 6.7 MB
Formato Adobe PDF
6.7 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/657137
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 0
social impact