The objective of this study is to evaluate and to compare some of the statistical models for the monthly prediction of clear-air scintillation variance and amplitude from ground meteorological measurements. Two new statistical methods, namely the direct and the modelled physical-statistical prediction models, are also introduced and discussed. They are both based on simulated data of received scintillation power derived from a large historical radiosounding set, acquired in a mid-latitudue site. The long-term predictions derived from each model are compared with measurements from the Olympus satellite beacons at the Louvain-la-Neuve site at 12·5 and 29·7 GHz and at the Milan site at 19·77 GHz during 1992. The model intercomparison is carried out by checking the assumed best-fitting probability density function for the variance and log-amplitude fluctuations and analysing the proposed relationships between scintillation parameters and ground meteorological measurements. Results are discussed in order to understand the potentials and the limits of each prediction model within this case study. The agreement with Olympus measurements is found to be mainly dependent on the proper parametrization of prediction models to the radiometeorological variables along the earth–satellite path.

EVALUATION OF STATISTICAL MODELS FOR CLEAR-AIR SCINTILLATION PREDICTION USING OLYMPUS SATELLITE MEASUREMENTS

RIVA, CARLO GIUSEPPE;
1997-01-01

Abstract

The objective of this study is to evaluate and to compare some of the statistical models for the monthly prediction of clear-air scintillation variance and amplitude from ground meteorological measurements. Two new statistical methods, namely the direct and the modelled physical-statistical prediction models, are also introduced and discussed. They are both based on simulated data of received scintillation power derived from a large historical radiosounding set, acquired in a mid-latitudue site. The long-term predictions derived from each model are compared with measurements from the Olympus satellite beacons at the Louvain-la-Neuve site at 12·5 and 29·7 GHz and at the Milan site at 19·77 GHz during 1992. The model intercomparison is carried out by checking the assumed best-fitting probability density function for the variance and log-amplitude fluctuations and analysing the proposed relationships between scintillation parameters and ground meteorological measurements. Results are discussed in order to understand the potentials and the limits of each prediction model within this case study. The agreement with Olympus measurements is found to be mainly dependent on the proper parametrization of prediction models to the radiometeorological variables along the earth–satellite path.
1997
scintillation, prediction models, Olympus satellite
File in questo prodotto:
File Dimensione Formato  
PeeEta15_2_97.pdf

Accesso riservato

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 357.75 kB
Formato Adobe PDF
357.75 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/653554
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 11
social impact