This paper presents two ways to transfer a spacecraft to distant periodic orbits in the Earth–Moon system. These unstable periodic orbits of the restricted three-body problem reveal a rich phase-portrait structure that can be used by space missions. Through the perspective of dynamical system theory, distant periodic orbits' invariant manifolds can be exploited to design novel low-energy trajectories in the Earth–Moon framework. Interior and exterior transfers are presented. The latter use impulsive, high-thrust propulsion to target the stable manifold from the exterior. Interior transfers are instead formulated with continuous, low-thrust propulsion. The attainable sets are used in both cases to handle families of either coast arcs or low-thrust orbits. First guess solutions are optimized in the framework of the Sun–Earth–Moon–Spacecraft restricted four-body problem through direct transcription and multiple shooting. The novelty of the presented solutions, as well as their efficiency, is demonstrated through examples.

Transfers to Distant Periodic Orbits Around the Moon via Their Invariant Manifolds

MINGOTTI, GIORGIO PIETRO;TOPPUTO, FRANCESCO;BERNELLI ZAZZERA, FRANCO
2012-01-01

Abstract

This paper presents two ways to transfer a spacecraft to distant periodic orbits in the Earth–Moon system. These unstable periodic orbits of the restricted three-body problem reveal a rich phase-portrait structure that can be used by space missions. Through the perspective of dynamical system theory, distant periodic orbits' invariant manifolds can be exploited to design novel low-energy trajectories in the Earth–Moon framework. Interior and exterior transfers are presented. The latter use impulsive, high-thrust propulsion to target the stable manifold from the exterior. Interior transfers are instead formulated with continuous, low-thrust propulsion. The attainable sets are used in both cases to handle families of either coast arcs or low-thrust orbits. First guess solutions are optimized in the framework of the Sun–Earth–Moon–Spacecraft restricted four-body problem through direct transcription and multiple shooting. The novelty of the presented solutions, as well as their efficiency, is demonstrated through examples.
2012
Restricted three-body problem; Invariant manifolds; Low-energy transfers; Dynamical system theory; Low-thrust propulsion
File in questo prodotto:
File Dimensione Formato  
MINGG03-12.pdf

accesso aperto

Descrizione: Paper
: Publisher’s version
Dimensione 1.42 MB
Formato Adobe PDF
1.42 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/648930
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 34
  • ???jsp.display-item.citation.isi??? 26
social impact