Vertical arrays of carbon nanotubes (VACNTs) show unique mechanical behavior in compression, with a highly nonlinear response similar to that of open cell foams and the ability to recover large deformations. Here, we study the viscoelastic response of both freestanding VACNT arrays and sandwich structures composed of a VACNT array partially embedded between two layers of poly(dimethylsiloxane) (PDMS) and bucky paper. The VACNTs tested are ∼2 mm thick foams grown via an injection chemical vapor deposition method. Both freestanding and sandwich structures exhibit a time-dependent behavior under compression. A power-law function of time is used to describe the main features observed in creep and stress-relaxation tests. The power-law exponents show nonlinear viscoelastic behavior in which the rate of creep is dependent upon the stress level and the rate of stress relaxation is dependent upon the strain level. The results show a marginal effect of the thin PDMS/bucky paper layers on the viscoelastic responses. At high strain levels (ɛ = 0.8), the peak stress for the anchored CNTs reaches ∼45 MPa, whereas it is only ∼15 MPa for freestanding CNTs, suggesting a large effect of PDMS on the structural response of the sandwich structures.
Nonlinear viscoelasticity of freestanding and polymer-anchored vertically aligned carbon nanotube foams
LATTANZI, LUDOVICA;DE NARDO, LUIGI;
2012-01-01
Abstract
Vertical arrays of carbon nanotubes (VACNTs) show unique mechanical behavior in compression, with a highly nonlinear response similar to that of open cell foams and the ability to recover large deformations. Here, we study the viscoelastic response of both freestanding VACNT arrays and sandwich structures composed of a VACNT array partially embedded between two layers of poly(dimethylsiloxane) (PDMS) and bucky paper. The VACNTs tested are ∼2 mm thick foams grown via an injection chemical vapor deposition method. Both freestanding and sandwich structures exhibit a time-dependent behavior under compression. A power-law function of time is used to describe the main features observed in creep and stress-relaxation tests. The power-law exponents show nonlinear viscoelastic behavior in which the rate of creep is dependent upon the stress level and the rate of stress relaxation is dependent upon the strain level. The results show a marginal effect of the thin PDMS/bucky paper layers on the viscoelastic responses. At high strain levels (ɛ = 0.8), the peak stress for the anchored CNTs reaches ∼45 MPa, whereas it is only ∼15 MPa for freestanding CNTs, suggesting a large effect of PDMS on the structural response of the sandwich structures.File | Dimensione | Formato | |
---|---|---|---|
JAP2012.pdf
Accesso riservato
:
Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione
1.74 MB
Formato
Adobe PDF
|
1.74 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.