We demonstrate the synthesis of different types of, intelligent" 1D photonic crystals (PCs), termed Bragg stacks, using hydrothermal or sol-gel procedures followed by spin-coating, which permit a wide range of materials to be included as functional layer materials. Bragg stacks based on the clay mineral Laponite have been realized, whose response to the presence of liquid analytes translates into a shift of the optical stop band position. Clay-based PCs are capable of reversible swelling and accommodating changes in the effective refractive index of the layers by both adsorption and ion-exchange processes, and key issues in chemo-optical sensing such as accessibility, reversibility and selectivity are demonstrated. The utilization of nanoscale particles as active layer components is highlighted by the integration of microporous materials - zeolites - into a photonic crystal backbone. We demonstrate that the sensitivity of the PC to solvents and gases and thus, refractive index changes, can be maximized through the high porous volumes of nanoparticle-based layers.

Stimuli-responsive Bragg Stacks for chemo-optical Sensing Applications

SCOTOGNELLA, FRANCESCO;
2010-01-01

Abstract

We demonstrate the synthesis of different types of, intelligent" 1D photonic crystals (PCs), termed Bragg stacks, using hydrothermal or sol-gel procedures followed by spin-coating, which permit a wide range of materials to be included as functional layer materials. Bragg stacks based on the clay mineral Laponite have been realized, whose response to the presence of liquid analytes translates into a shift of the optical stop band position. Clay-based PCs are capable of reversible swelling and accommodating changes in the effective refractive index of the layers by both adsorption and ion-exchange processes, and key issues in chemo-optical sensing such as accessibility, reversibility and selectivity are demonstrated. The utilization of nanoscale particles as active layer components is highlighted by the integration of microporous materials - zeolites - into a photonic crystal backbone. We demonstrate that the sensitivity of the PC to solvents and gases and thus, refractive index changes, can be maximized through the high porous volumes of nanoparticle-based layers.
2010
PHOTONIC CRYSTAL MATERIALS AND DEVICES IX
9780819481863
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/634930
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 7
social impact