The numerical tools to simulate blood flow in the cardiovascular system are constantly developing due to the great clinical interest and to scientific advances in mathematical models and computational power. The present work aims to address and validate new algorithms to efficiently predict the hemodynamics in large arteries. These algorithms rely on finite elements simulation of the fluidstructure interaction between blood flow and arterial wall deformation of a healthy aorta. Different sets of boundary conditions are devised and tested. The mean velocity and pressure time evolution is plotted on different sections of the aorta and the wall shear stress distribution is computed. The results are compared with those obtained with a rigid wall simulation. Pulse wave velocity is computed and compared with the values available from the literature. The flow boundary conditions used for the outlets are obtained using the solution of a one-dimensional model. The results of the simulations are in agreement with the physiological data in terms of wall shear stress, wall displacement, pressure waveforms and velocities. Keywords: Blood flow models; Fluidstructure interaction; Finite elements; Hemodynamics

Fluid-Structure Interaction Simulation of Aortic Blood Flow

QUARTERONI, ALFIO MARIA
2011

Abstract

The numerical tools to simulate blood flow in the cardiovascular system are constantly developing due to the great clinical interest and to scientific advances in mathematical models and computational power. The present work aims to address and validate new algorithms to efficiently predict the hemodynamics in large arteries. These algorithms rely on finite elements simulation of the fluidstructure interaction between blood flow and arterial wall deformation of a healthy aorta. Different sets of boundary conditions are devised and tested. The mean velocity and pressure time evolution is plotted on different sections of the aorta and the wall shear stress distribution is computed. The results are compared with those obtained with a rigid wall simulation. Pulse wave velocity is computed and compared with the values available from the literature. The flow boundary conditions used for the outlets are obtained using the solution of a one-dimensional model. The results of the simulations are in agreement with the physiological data in terms of wall shear stress, wall displacement, pressure waveforms and velocities. Keywords: Blood flow models; Fluidstructure interaction; Finite elements; Hemodynamics
blood flow models, finite elements, fluid structure interaction, hemodynamics
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/633680
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 126
  • ???jsp.display-item.citation.isi??? ND
social impact