We use a combination of original light scattering techniques and particles with unique optical properties to investigate the behavior of suspensions of attractive colloids under gravitational stress, following over time the concentration profile, the velocity profile, and the microscopic dynamics. During the compression regime, the sedimentation velocity grows nearly linearly with height, implying that the gel settling may be fully described by a (time-dependent) strain rate. We find that the microscopic dynamics exhibit remarkable scaling properties when time is normalized by the strain rate, showing that the gel microscopic restructuring is dominated by its macroscopic deformation.

Highly Nonlinear Dynamics in a Slowly Sedimenting Colloidal Gel

BUZZACCARO, STEFANO;PIAZZA, ROBERTO;
2011

Abstract

We use a combination of original light scattering techniques and particles with unique optical properties to investigate the behavior of suspensions of attractive colloids under gravitational stress, following over time the concentration profile, the velocity profile, and the microscopic dynamics. During the compression regime, the sedimentation velocity grows nearly linearly with height, implying that the gel settling may be fully described by a (time-dependent) strain rate. We find that the microscopic dynamics exhibit remarkable scaling properties when time is normalized by the strain rate, showing that the gel microscopic restructuring is dominated by its macroscopic deformation.
POLYMER MIXTURES; TRANSIENT GELS; SUSPENSIONS; ARREST
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11311/608094
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact