Biodegradable magnesium alloy stents (MAS) can provide a great benefit for diseased vessels and avoid the long-term incompatible interactions between vessels and permanent stent platforms. However, the existing MAS showed insufficient scaffolding to the target vessels due to short degradation time. In this study, a three dimensional finite element model combined with a degradable material model of AZ31 (Al 0.03, Zn 0.01, Mn 0.002 and Mg balance, mass percentage) was applied to three different MAS designs including an already implanted stent (Stent A), an optimized design (Stent B) and a patented stent design (Stent C). One ring of each design was implanted through a simulation in a vessel model then degraded with the changing interaction between outer stent surface and the vessel. Results showed that a proper stent design (Stent B) can lead to an increase of nearly 120% in half normalized recoil time of the vessel compared to the Stent A; moreover, the expectation that the MAS design, with more mass and optimized mechanical properties, can increase scaffolding time was verified numerically. The Stent C has more materials than Stent B; however, it only increased the half normalized recoil time of the vessel by nearly 50% compared to the Stent A because of much higher stress concentration than that of Stent B. The 3D model can provide a convenient design and testing tool for novel magnesium alloy stents.

Finite element analyses for design evaluation of biodegradable magnesium alloy stents in arterial vessels

WU, WEI;GASTALDI, DARIO;PETRINI, LORENZA;MIGLIAVACCA, FRANCESCO
2011-01-01

Abstract

Biodegradable magnesium alloy stents (MAS) can provide a great benefit for diseased vessels and avoid the long-term incompatible interactions between vessels and permanent stent platforms. However, the existing MAS showed insufficient scaffolding to the target vessels due to short degradation time. In this study, a three dimensional finite element model combined with a degradable material model of AZ31 (Al 0.03, Zn 0.01, Mn 0.002 and Mg balance, mass percentage) was applied to three different MAS designs including an already implanted stent (Stent A), an optimized design (Stent B) and a patented stent design (Stent C). One ring of each design was implanted through a simulation in a vessel model then degraded with the changing interaction between outer stent surface and the vessel. Results showed that a proper stent design (Stent B) can lead to an increase of nearly 120% in half normalized recoil time of the vessel compared to the Stent A; moreover, the expectation that the MAS design, with more mass and optimized mechanical properties, can increase scaffolding time was verified numerically. The Stent C has more materials than Stent B; however, it only increased the half normalized recoil time of the vessel by nearly 50% compared to the Stent A because of much higher stress concentration than that of Stent B. The 3D model can provide a convenient design and testing tool for novel magnesium alloy stents.
2011
Stent; Finite element; Degradable materials; Continuum damage mechanics; Corrosion
File in questo prodotto:
File Dimensione Formato  
Wu-MATERIALS SCIENCE ENG-2011.pdf

Accesso riservato

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 1.38 MB
Formato Adobe PDF
1.38 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/606691
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 82
  • ???jsp.display-item.citation.isi??? 68
social impact