Compliancy to grid codes has been a driving force behind the development of variable-speed technologies for wind generation. This resulted in the doubly-fed induction generator (DFIG) to become a common technology. The operational benefits of the DFIG derive from the possibility of controlling the operating speed of the generator from the rotor windings. Even if constructively different, the Dual-Excited Synchronous Generator (DESG) is functionally identical to the DFIG and offers an equivalent controllability. However, the mechanical design of the DESG can be exploited to be comparatively better than a DFIG for low speed operations. Thus, DESG can be a valid candidate as non conventional variable-speed constant-frequency generators for wind power generation. This paper presents a novel control technique for wind turbines that allows the power flowing into the rotor to be actively regulated and even zeroed. The algorithm is exemplified on a DESG but can be equally implemented also on a DFIG. The control of the rotor power can be translated into a simplified power electronics configuration, since the grid-side inverter in the back-to-back converter can be replaced by an unregulated rectifier, leading perhaps to a cost reduction and to an increase of reliability.

A novel control of Dual-Excited Synchronous machines for variable-speed wind turbines

PIEGARI, LUIGI;
2011-01-01

Abstract

Compliancy to grid codes has been a driving force behind the development of variable-speed technologies for wind generation. This resulted in the doubly-fed induction generator (DFIG) to become a common technology. The operational benefits of the DFIG derive from the possibility of controlling the operating speed of the generator from the rotor windings. Even if constructively different, the Dual-Excited Synchronous Generator (DESG) is functionally identical to the DFIG and offers an equivalent controllability. However, the mechanical design of the DESG can be exploited to be comparatively better than a DFIG for low speed operations. Thus, DESG can be a valid candidate as non conventional variable-speed constant-frequency generators for wind power generation. This paper presents a novel control technique for wind turbines that allows the power flowing into the rotor to be actively regulated and even zeroed. The algorithm is exemplified on a DESG but can be equally implemented also on a DFIG. The control of the rotor power can be translated into a simplified power electronics configuration, since the grid-side inverter in the back-to-back converter can be replaced by an unregulated rectifier, leading perhaps to a cost reduction and to an increase of reliability.
2011
Proceedings of PowerTech, 2011 IEEE
9781424484171
File in questo prodotto:
File Dimensione Formato  
powertech_tricoli.pdf

Accesso riservato

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 611.58 kB
Formato Adobe PDF
611.58 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/603681
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? ND
social impact