We consider one of the latest feature included in the Release 9 of the GSM/EDGE standard: the Orthogonal Sub Channel (OSC) transmission scheme. OSC aims at doubling the cell capacity by multiplexing two co-cell users on the same radio resource. In this work we deal with the challenge of finding the optimum pairing strategy among co-cell OSC users exploiting the Adaptive QPSK (AQPSK) modulation in both up- and down-link scenarios. The aim of the proposed scheduling algorithm is to i) find the best association among the users and the available OSC logical channels, and ii) select the optimum transmitting powers. The criterion for optimization is the minimization of the overall transmitted power constrained to service quality targets. The proposed scheduling algorithm is performed locally at the BS, exploiting channel state information reported by the users. Numerical results show significant power saving provided by the algorithm in heterogeneous scenarios with variable cell load.
Resource Allocation Algorithm for GSM-OSC Cellular Systems
MOLTENI, DANIELE GIUSEPPE;NICOLI, MONICA BARBARA;
2011-01-01
Abstract
We consider one of the latest feature included in the Release 9 of the GSM/EDGE standard: the Orthogonal Sub Channel (OSC) transmission scheme. OSC aims at doubling the cell capacity by multiplexing two co-cell users on the same radio resource. In this work we deal with the challenge of finding the optimum pairing strategy among co-cell OSC users exploiting the Adaptive QPSK (AQPSK) modulation in both up- and down-link scenarios. The aim of the proposed scheduling algorithm is to i) find the best association among the users and the available OSC logical channels, and ii) select the optimum transmitting powers. The criterion for optimization is the minimization of the overall transmitted power constrained to service quality targets. The proposed scheduling algorithm is performed locally at the BS, exploiting channel state information reported by the users. Numerical results show significant power saving provided by the algorithm in heterogeneous scenarios with variable cell load.File | Dimensione | Formato | |
---|---|---|---|
CV_2011_ICC.pdf
Accesso riservato
:
Publisher’s version
Dimensione
571.11 kB
Formato
Adobe PDF
|
571.11 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.