We describe procedures for the multi-disciplinary design optimization of wind turbines, where design parameters are optimized by maximizing a merit function, subjected to constraints that translate all relevant design requirements. Evaluation of merit function and constraints is performed by running simulations with a parametric high-fidelity aeroservo- elastic model; a detailed cross-sectional structural model is used for the minimum weight constrained sizing of the rotor blade. To reduce the computational cost, the multidisciplinary optimization is performed by a multi-stage process that first alternates between an aerodynamic shape optimization step and a structural blade optimization one, and then combines the two to yield the final optimum solution. A complete design loop can be performed using the proposed algorithm using standard desktop computing hardware in onetwo days. The design procedures are implemented in a computer program and demonstrated on the optimization of multi-MW horizontal axis wind turbines and on the design of an aero-elastically scaled wind tunnel model.

Multi-Disciplinary Constrained Optimization of Wind Turbines

BOTTASSO, CARLO LUIGI;CAMPAGNOLO, FILIPPO;CROCE, ALESSANDRO
2012-01-01

Abstract

We describe procedures for the multi-disciplinary design optimization of wind turbines, where design parameters are optimized by maximizing a merit function, subjected to constraints that translate all relevant design requirements. Evaluation of merit function and constraints is performed by running simulations with a parametric high-fidelity aeroservo- elastic model; a detailed cross-sectional structural model is used for the minimum weight constrained sizing of the rotor blade. To reduce the computational cost, the multidisciplinary optimization is performed by a multi-stage process that first alternates between an aerodynamic shape optimization step and a structural blade optimization one, and then combines the two to yield the final optimum solution. A complete design loop can be performed using the proposed algorithm using standard desktop computing hardware in onetwo days. The design procedures are implemented in a computer program and demonstrated on the optimization of multi-MW horizontal axis wind turbines and on the design of an aero-elastically scaled wind tunnel model.
2012
Wind turbine; Multi-disciplinary optimization; Holistic design; Aero-servo-elasticity; Multibody dynamics
File in questo prodotto:
File Dimensione Formato  
BOTTC02-12.pdf

Accesso riservato

Descrizione: Paper
: Publisher’s version
Dimensione 1.68 MB
Formato Adobe PDF
1.68 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/600887
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 97
  • ???jsp.display-item.citation.isi??? 74
social impact