This paper discusses the problem of control constraint realization applied to the design of maneuvers of complex underactuated systems modeled as multibody problems. Applications of interest in the area of aerospace engineering are presented and discussed. The tangent realization of the control constraint is discussed from a theoretical point of view and used to determine feedforward control of realistic under-actuated systems. The effectiveness of the computed feedforward input is subsequently verified by applying it to more detailed models of the problems, in presence of disturbances and uncertainties in combination with feedback control. The proposed applications consist in the position control of a complex closed chain mechanism representative of a robotic system, the control of a simplified model of a canard and a conventional air vehicle in the vertical plane, and the angular velocity control of a wind-turbine. In the aeromechanics examples, the tangent realization of the control relies on the availability of the Jacobian matrix of an aeroelastic model. All problems are solved using a free general-purpose multibody software that writes the constrained dynamics ofmulti-field problems in form of Differential-Algebraic Equations (DAE). The equations are integrated using A/L-stable algorithms. The essential extension to the multibody code consisted in the addition of the capability to write arbitrary constraint equations and apply the corresponding reaction multipliers to arbitrary equations of motion. This allowed to exploit the modeling capabilities of the formulation without any undue restriction on the modeling requirements.

Control Constraint Realization Applied to Underactuated Aerospace Systems

MASARATI, PIERANGELO;MORANDINI, MARCO;FUMAGALLI, ALESSANDRO
2011-01-01

Abstract

This paper discusses the problem of control constraint realization applied to the design of maneuvers of complex underactuated systems modeled as multibody problems. Applications of interest in the area of aerospace engineering are presented and discussed. The tangent realization of the control constraint is discussed from a theoretical point of view and used to determine feedforward control of realistic under-actuated systems. The effectiveness of the computed feedforward input is subsequently verified by applying it to more detailed models of the problems, in presence of disturbances and uncertainties in combination with feedback control. The proposed applications consist in the position control of a complex closed chain mechanism representative of a robotic system, the control of a simplified model of a canard and a conventional air vehicle in the vertical plane, and the angular velocity control of a wind-turbine. In the aeromechanics examples, the tangent realization of the control relies on the availability of the Jacobian matrix of an aeroelastic model. All problems are solved using a free general-purpose multibody software that writes the constrained dynamics ofmulti-field problems in form of Differential-Algebraic Equations (DAE). The equations are integrated using A/L-stable algorithms. The essential extension to the multibody code consisted in the addition of the capability to write arbitrary constraint equations and apply the corresponding reaction multipliers to arbitrary equations of motion. This allowed to exploit the modeling capabilities of the formulation without any undue restriction on the modeling requirements.
2011
Volume 4: 8th International Conference on Multibody Systems, Nonlinear Dynamics, and Control, Parts A and B
9780791854815
File in questo prodotto:
File Dimensione Formato  
MASAP07-11.pdf

Accesso riservato

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 815.71 kB
Formato Adobe PDF
815.71 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/600885
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? ND
social impact