Aluminising processes are well-known techniques industrially adopted to enrich of aluminium thesurface layers of Ni-based alloys thus improving their resistance to environmental interaction at high-temperature. The results of aluminising processes are typically described in terms of the presence, compositions and thickness of the sequence of layers at the surface of the treated parts. Following this approach, the microstructural features of the diffusion layers obtained under different holding times via vapour-phase type high-temperature low-activity process were experimentally investigated on single crystal CMSX4 alloy. The attention was particularly focused on the effect of the crystallographic orientation of the crystal on the coating features. The evolution of the diffusion layers under different process conditions was then taken into account.

Evolution of the diffusion layer in a CMSX4 single crystal superalloy

GARIBOLDI, ELISABETTA;HAN, XINGHUA;
2011-01-01

Abstract

Aluminising processes are well-known techniques industrially adopted to enrich of aluminium thesurface layers of Ni-based alloys thus improving their resistance to environmental interaction at high-temperature. The results of aluminising processes are typically described in terms of the presence, compositions and thickness of the sequence of layers at the surface of the treated parts. Following this approach, the microstructural features of the diffusion layers obtained under different holding times via vapour-phase type high-temperature low-activity process were experimentally investigated on single crystal CMSX4 alloy. The attention was particularly focused on the effect of the crystallographic orientation of the crystal on the coating features. The evolution of the diffusion layers under different process conditions was then taken into account.
2011
Advanced Materials Research
superalloy; aluminizing; anisotropy; CSMX4
File in questo prodotto:
File Dimensione Formato  
AMR.278.521.pdf

Accesso riservato

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 1.59 MB
Formato Adobe PDF
1.59 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/593683
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact