Astrophysical jets are ubiquitous throughout the universe. They can be observed to emerge from protostellar objects, stellar x-ray binaries and supermassive black holes located at the center of active galaxies, and they are believed to originate from a central object that is surrounded by a magnetized accretion disc. With the motivations to understand whether hypersonic Newtonian jets produce any similarity to the morphologies observed in jets from young stellar objects (YSOs) and whether numerical codes, based on Godunov-type schemes, capture the basic physics of shocked flows, we have conceived a laboratory experiment and performed three-dimensional (3D) numerical simulations that reproduce the mid-to-long-term evolution of hypersonic jets. Here we show that these jets propagate, maintaining their collimation over long distances, in units of the jet initial radius. The jets studied are quasi-isentropic, are both lighter and heavier than the ambient and meet the two main scaling parameter requirements for proto-stellar jets: the ejection Mach number and the ambient/jet density ratio.
Astrophysical Jets: Insights into Long-Term Hydrodynamics
BELAN, MARCO;DE PONTE, SERGIO;
2011-01-01
Abstract
Astrophysical jets are ubiquitous throughout the universe. They can be observed to emerge from protostellar objects, stellar x-ray binaries and supermassive black holes located at the center of active galaxies, and they are believed to originate from a central object that is surrounded by a magnetized accretion disc. With the motivations to understand whether hypersonic Newtonian jets produce any similarity to the morphologies observed in jets from young stellar objects (YSOs) and whether numerical codes, based on Godunov-type schemes, capture the basic physics of shocked flows, we have conceived a laboratory experiment and performed three-dimensional (3D) numerical simulations that reproduce the mid-to-long-term evolution of hypersonic jets. Here we show that these jets propagate, maintaining their collimation over long distances, in units of the jet initial radius. The jets studied are quasi-isentropic, are both lighter and heavier than the ambient and meet the two main scaling parameter requirements for proto-stellar jets: the ejection Mach number and the ambient/jet density ratio.File | Dimensione | Formato | |
---|---|---|---|
TORDD01-11.pdf
accesso aperto
Descrizione: Paper
:
Publisher’s version
Dimensione
1.56 MB
Formato
Adobe PDF
|
1.56 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.