This work presents the results of a research project that evaluated the possibility to carry out ergonomic analyses on virtual prototypes that permitted tactile interaction. We propose an approach based on Virtual Reality (VR) and haptics: the former to improve visual rendering of a digital model, the latter to permit tactile interaction. The products considered were control boards. Atomic components such as knobs, sliders and buttons are employed. The paper presents the architecture of an ergonomic workstation and its first implementation based on commercial systems and ad hoc haptic devices specifically developed for the purpose. Major problems related to a VR environment, such as visualisation and human body tracking, are discussed; the architecture of haptic devices and technical solutions to achieve a satisfactory haptic rendering are presented. Finally, the paper proposes a test procedure and presents the results of tests on the behaviour of ergonomic workstation components. Work in progress and future developments conclude the paper.

Integration of Virtul Reality and Haptics to Carry Out Ergonomic Tests on Virtual Contro Board

COLOMBO, GIORGIO;
2010-01-01

Abstract

This work presents the results of a research project that evaluated the possibility to carry out ergonomic analyses on virtual prototypes that permitted tactile interaction. We propose an approach based on Virtual Reality (VR) and haptics: the former to improve visual rendering of a digital model, the latter to permit tactile interaction. The products considered were control boards. Atomic components such as knobs, sliders and buttons are employed. The paper presents the architecture of an ergonomic workstation and its first implementation based on commercial systems and ad hoc haptic devices specifically developed for the purpose. Major problems related to a VR environment, such as visualisation and human body tracking, are discussed; the architecture of haptic devices and technical solutions to achieve a satisfactory haptic rendering are presented. Finally, the paper proposes a test procedure and presents the results of tests on the behaviour of ergonomic workstation components. Work in progress and future developments conclude the paper.
2010
virtual reality haptic virtual prototype ergonomic tests control boards
File in questo prodotto:
File Dimensione Formato  
IJPD10-Colombo.pdf

Accesso riservato

: Altro materiale allegato
Dimensione 599.13 kB
Formato Adobe PDF
599.13 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/580641
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? ND
social impact