Let T be a quantum Markov semigroup on B(h) with a faithful normal invariant state $\rho$ whose generator is represented in a generalised GKSL form $\mathcal{L}(x)=-2^{-1}\sum_\ell(L_\ell^*L_\ell x -2L_\ell^* x L_\ell + x L_\ell^*L_\ell)+i[H,x]$ with possibly unbounded $H, L_\ell$.We show that the biggest von Neumann-subalgebra N(T) of B(h) where T acts as a semigroup of automorphisms coincides with the generalised commutator of $e^{−itH}L_\ell e^{itH}$, $e^{−itH}L_\ell e^{itH}$, $t\ge 0$ under some natural regularity conditions. The proof we present here does not involve dilations T .
The decoherence-free subalgebra of a quantum Markov semigroup on B(h).
A. Dhahri;FAGNOLA, FRANCO;
2011-01-01
Abstract
Let T be a quantum Markov semigroup on B(h) with a faithful normal invariant state $\rho$ whose generator is represented in a generalised GKSL form $\mathcal{L}(x)=-2^{-1}\sum_\ell(L_\ell^*L_\ell x -2L_\ell^* x L_\ell + x L_\ell^*L_\ell)+i[H,x]$ with possibly unbounded $H, L_\ell$.We show that the biggest von Neumann-subalgebra N(T) of B(h) where T acts as a semigroup of automorphisms coincides with the generalised commutator of $e^{−itH}L_\ell e^{itH}$, $e^{−itH}L_\ell e^{itH}$, $t\ge 0$ under some natural regularity conditions. The proof we present here does not involve dilations T .File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
ad-ff-rr-qp30.pdf
Accesso riservato
:
Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione
241.88 kB
Formato
Adobe PDF
|
241.88 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.