We prove the existence of a strong solution for Blake & Zisserman functional under Dirichlet boundary condition. The result is obtained by showing partial regularity of weak solutions up to the boundary through blow-up technique and a decay property for bi-harmonic functions in half-disk.

A Dirichlet problem with free gradient discontinuity

TOMARELLI, FRANCO
2010

Abstract

We prove the existence of a strong solution for Blake & Zisserman functional under Dirichlet boundary condition. The result is obtained by showing partial regularity of weak solutions up to the boundary through blow-up technique and a decay property for bi-harmonic functions in half-disk.
Calculus of Variations; free discontinuity problems; regularity of weak solutions
File in questo prodotto:
File Dimensione Formato  
AMSA.pdf

Accesso riservato

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 400.28 kB
Formato Adobe PDF
400.28 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11311/577917
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact