Blade vibration reduction is an important task in high performance turbo machinery for power generation, in order to avoid the risk of blade failure due to the overcoming of fatigue limit. A possible way to obtain this result is a contact related phenomenon, i.e. by physically limiting the vibration amplitude on the blade tip leaving a small gap between the shrouds of adjacent blades. When the relative displacement between adjacent blades exceeds the gap, in a certain vibration mode of the blade row, a contact occurs between the shrouds, the relative motion is restricted and energy is dissipated by friction and impact during the contact. This is called the snubbing mechanism. In this paper, an original simplified model of bladed disks, in which the snubbing mechanism can occur, is presented and numerical integration in time domain furnishes the time histories of the vibrations of the blades. The level of vibration reduction is then evaluated in some different modes that could be excited for instance by the fluid flow. It is also shown that unlucky combinations of system and excitation parameters can effect also a certain magnification instead of a reduction of the vibration amplitudes. Experimental results on single blade and blade groups of a steam turbine are used to tune the parameters of the system.

A model to study the reduction of turbine blade vibration using the Snubbing Mechanism

PENNACCHI, PAOLO EMILIO LINO MARIA;CHATTERTON, STEVEN;BACHSCHMID, NICOLO';
2011-01-01

Abstract

Blade vibration reduction is an important task in high performance turbo machinery for power generation, in order to avoid the risk of blade failure due to the overcoming of fatigue limit. A possible way to obtain this result is a contact related phenomenon, i.e. by physically limiting the vibration amplitude on the blade tip leaving a small gap between the shrouds of adjacent blades. When the relative displacement between adjacent blades exceeds the gap, in a certain vibration mode of the blade row, a contact occurs between the shrouds, the relative motion is restricted and energy is dissipated by friction and impact during the contact. This is called the snubbing mechanism. In this paper, an original simplified model of bladed disks, in which the snubbing mechanism can occur, is presented and numerical integration in time domain furnishes the time histories of the vibrations of the blades. The level of vibration reduction is then evaluated in some different modes that could be excited for instance by the fluid flow. It is also shown that unlucky combinations of system and excitation parameters can effect also a certain magnification instead of a reduction of the vibration amplitudes. Experimental results on single blade and blade groups of a steam turbine are used to tune the parameters of the system.
2011
Snubbing mechanism; Vibration suppression; Steam turbine blade vibration; Nonlinear response; Simulation
File in questo prodotto:
File Dimensione Formato  
5b87f4cba0cfaabd6a8ee969e3275614.pdf

Accesso riservato

Descrizione: Published PDF paper
: Publisher’s version
Dimensione 1.54 MB
Formato Adobe PDF
1.54 MB Adobe PDF   Visualizza/Apri
A model to study the reduction of turbine blade vibration using the V6.pdf

accesso aperto

Descrizione: Paper post-print
: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 1.4 MB
Formato Adobe PDF
1.4 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/575804
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 48
  • ???jsp.display-item.citation.isi??? 34
social impact