This paper concerns the problem of designing standard artificial tunnels for rock boulder protection. The proposed approach consists in uncoupling the problem of the dynamic response of the granular dissipative soil cushion placed on the top of artificial tunnels from the dynamic response of the reinforced concrete structure underneath. An already conceived elasto-viscoplastic constitutive model capable of simulating the penetration process of the boulder within the soil stratum and reproducing the force acting on the boulder is briefly described. Its simplified one-dimensional formulation is outlined. A modified version of the model, taking into account large displacements occurring when either impacts on loose granular soils or high energetic content impacts on dense sand strata are considered, is also introduced. To validate the approach, some in situ test results are numerically simulated. A simplified numerical approach is proposed for obtaining the evolution with time of both impact force and boulder penetration, bypassing the use of the rheological model. This goal is achieved by introducing some abaci obtained numerically with reference to an ideal dense sand soil stratum of reference.

Design Charts for Evaluating Impact Forces on DissipativeGranular Soil Cushions

DI PRISCO, CLAUDIO GIULIO;VECCHIOTTI, MAURO
2010-01-01

Abstract

This paper concerns the problem of designing standard artificial tunnels for rock boulder protection. The proposed approach consists in uncoupling the problem of the dynamic response of the granular dissipative soil cushion placed on the top of artificial tunnels from the dynamic response of the reinforced concrete structure underneath. An already conceived elasto-viscoplastic constitutive model capable of simulating the penetration process of the boulder within the soil stratum and reproducing the force acting on the boulder is briefly described. Its simplified one-dimensional formulation is outlined. A modified version of the model, taking into account large displacements occurring when either impacts on loose granular soils or high energetic content impacts on dense sand strata are considered, is also introduced. To validate the approach, some in situ test results are numerically simulated. A simplified numerical approach is proposed for obtaining the evolution with time of both impact force and boulder penetration, bypassing the use of the rheological model. This goal is achieved by introducing some abaci obtained numerically with reference to an ideal dense sand soil stratum of reference.
2010
Impacts; Sands; Artificial tunnels; Viscoplasticity; Numerical modeling
File in questo prodotto:
File Dimensione Formato  
GetPDFServlet.pdf

Accesso riservato

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 729.74 kB
Formato Adobe PDF
729.74 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/575365
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 17
social impact