An experimental study is described in this paper dealing with the tensile–tensile fatigue and the quasistatic post-fatigue tensile behaviour of a structurally stitched multi-ply carbon composite and the unstitched counterpart. The influence of the stitching on the fatigue life and on the residual post-fatigue quasi-static properties in two principal direction is investigated. The fatigue behaviour of both composites is represented by Wöhler-like diagrams. The damage imparted during fatigue is studied by X-ray analyses. The residual mechanical properties of the fatigued composites after different number of cycles are compared in term of stiffness and strength. The post-fatigue quasi-static tensile tests include acoustic emission (AE) registration and full-field surface strain mapping (SM) to investigate the damage onset and development. The main conclusions of the experimental work are: the fatigue life is improved in the direction of the structural stitching and is reduced in the orthogonal direction; for the considered cyclic stress level the post-fatigue reduction of the mechanical properties is limited by the structural stitching.

Fatigue and post-fatigue tensile behaviour of non-crimp stitched and unstitched carbon/epoxy composites

CARVELLI, VALTER;
2010-01-01

Abstract

An experimental study is described in this paper dealing with the tensile–tensile fatigue and the quasistatic post-fatigue tensile behaviour of a structurally stitched multi-ply carbon composite and the unstitched counterpart. The influence of the stitching on the fatigue life and on the residual post-fatigue quasi-static properties in two principal direction is investigated. The fatigue behaviour of both composites is represented by Wöhler-like diagrams. The damage imparted during fatigue is studied by X-ray analyses. The residual mechanical properties of the fatigued composites after different number of cycles are compared in term of stiffness and strength. The post-fatigue quasi-static tensile tests include acoustic emission (AE) registration and full-field surface strain mapping (SM) to investigate the damage onset and development. The main conclusions of the experimental work are: the fatigue life is improved in the direction of the structural stitching and is reduced in the orthogonal direction; for the considered cyclic stress level the post-fatigue reduction of the mechanical properties is limited by the structural stitching.
2010
Laminate; Fatigue; Mechanical properties
File in questo prodotto:
File Dimensione Formato  
Composites Science and Technology_2010-2.pdf

Accesso riservato

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 1.47 MB
Formato Adobe PDF
1.47 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/573613
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 37
  • ???jsp.display-item.citation.isi??? 22
social impact