The results of a theoretical and experimental investigation of the Gouy effect in Bessel beams are presented. We point out that the peculiar feature of the Bessel beams of being nondiffracting is related to the accumulation of an extra axial phase shift (i.e., the Gouy phase shift) linearly dependent on the propagation distance. The constant spatial rate of variation of the Gouy phase shift is independent of the order of the Bessel beam, while it is a growing function of the transverse component of the angular spectrum wave-vectors, originated by the transverse confinement of the beam. A free-space Mach-Zehnder interferometer has been set-up for measuring the transverse intensity distribution of the interference between holographically-produced finite-aperture Bessel beams of order from zero up to three and a reference Gaussian beam, at a wavelength of 633 nm. The interference patterns have been registered for different propagation distances and show a spatial periodicity, in agreement with the expected period due to the linear increase of the Gouy phase shift of the realized Bessel beams.

Gouy phase shift in nondiffracting Bessel beams

MARTELLI, PAOLO;TACCA, MATTEO;GATTO, ALBERTO;MARTINELLI, MARIO
2010-01-01

Abstract

The results of a theoretical and experimental investigation of the Gouy effect in Bessel beams are presented. We point out that the peculiar feature of the Bessel beams of being nondiffracting is related to the accumulation of an extra axial phase shift (i.e., the Gouy phase shift) linearly dependent on the propagation distance. The constant spatial rate of variation of the Gouy phase shift is independent of the order of the Bessel beam, while it is a growing function of the transverse component of the angular spectrum wave-vectors, originated by the transverse confinement of the beam. A free-space Mach-Zehnder interferometer has been set-up for measuring the transverse intensity distribution of the interference between holographically-produced finite-aperture Bessel beams of order from zero up to three and a reference Gaussian beam, at a wavelength of 633 nm. The interference patterns have been registered for different propagation distances and show a spatial periodicity, in agreement with the expected period due to the linear increase of the Gouy phase shift of the realized Bessel beams.
2010
TLC; diffraction theory
File in questo prodotto:
File Dimensione Formato  
opex2010_gouy.pdf

Accesso riservato

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 7.76 MB
Formato Adobe PDF
7.76 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/573147
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 44
  • ???jsp.display-item.citation.isi??? 33
social impact