The Hilbert transform H can be extended to an isometry of L^2. We prove this fact working directly on the principal value integral, completely avoiding the use of the Fourier transform and the use of orthogonal systems of functions. Our approach here is a byproduct of our attempts to understand the rearrangement properties of H.

A simple real-variable proof that the Hilbert transform is an L^2-isometry

LAENG, ENRICO
2010-01-01

Abstract

The Hilbert transform H can be extended to an isometry of L^2. We prove this fact working directly on the principal value integral, completely avoiding the use of the Fourier transform and the use of orthogonal systems of functions. Our approach here is a byproduct of our attempts to understand the rearrangement properties of H.
2010
Hilbert transform; L^2 isometry; rearrangement properties
File in questo prodotto:
File Dimensione Formato  
CRASSlaeng.pdf

Accesso riservato

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 303.4 kB
Formato Adobe PDF
303.4 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/572564
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact