This paper deals with a class of Boltzmann equations on the real line, extensions of the well-known Kac caricature. A distinguishing feature of the corresponding equations is that therein, the collision gain operators are defined by N-linear smoothing transformations. These kind of problems have been studied, from an essentially analytic viewpoint, in a recent paper by Bobylev, Cercignani and Gamba [Comm. Math. Phys. 291 (2009) 599–644]. Instead, the present work rests exclusively on probabilistic methods, based on techniques pertaining to the classical central limit problem and to the so-called fixed-point equations for probability distributions. An advantage of resorting to methods from the probability theory is that the same results—relative to self-similar solutions—as those obtained by Bobylev, Cercignani and Gamba, are here deduced under weaker conditions. In particular, it is shown how convergence to a self-similar solution depends on the belonging of the initial datum to the domain of attraction of a specific stable distribution. Moreover, some results on the speed of convergence are given in terms of Kantorovich–Wasserstein and Zolotarev distances between probability measures.
Self-similar solutions in one-dimensional kinetic models: a probabilistic view
F. Bassetti;LADELLI, LUCIA MARIA
2012-01-01
Abstract
This paper deals with a class of Boltzmann equations on the real line, extensions of the well-known Kac caricature. A distinguishing feature of the corresponding equations is that therein, the collision gain operators are defined by N-linear smoothing transformations. These kind of problems have been studied, from an essentially analytic viewpoint, in a recent paper by Bobylev, Cercignani and Gamba [Comm. Math. Phys. 291 (2009) 599–644]. Instead, the present work rests exclusively on probabilistic methods, based on techniques pertaining to the classical central limit problem and to the so-called fixed-point equations for probability distributions. An advantage of resorting to methods from the probability theory is that the same results—relative to self-similar solutions—as those obtained by Bobylev, Cercignani and Gamba, are here deduced under weaker conditions. In particular, it is shown how convergence to a self-similar solution depends on the belonging of the initial datum to the domain of attraction of a specific stable distribution. Moreover, some results on the speed of convergence are given in terms of Kantorovich–Wasserstein and Zolotarev distances between probability measures.File | Dimensione | Formato | |
---|---|---|---|
euclid.aoap.1350067990.pdf
Accesso riservato
:
Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione
324.19 kB
Formato
Adobe PDF
|
324.19 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.