In this paper, starting from a consistent mathematical model, a novel computational approach is proposed for assessing some biomechanical effects on drug release from coronary drug-eluting stents (DESs), related to tissue properties, local hemodynamics and stent design. A multiscale and multidomain advection-diffusion model is formulated for describing drug dynamics in the polymeric substrate covering the stent, into the arterial wall, and in the vessel lumen. The model accounts for tissue microstructure (anisotropic drug diffusion, porosity, drug retention induced by resident proteins), macrostructure (plaque between stent and tissue), and local hemodynamics. In the case of hydrophobic taxus-based compounds, several numerical analyses have been carried out on simplified geometries by using finite element simulations, performing significant comparisons with other recent studies and highlighting general conclusions for assessing effectiveness of some modelling features as well as useful hints for optimizing drug delivery design and technology.

Drug release from coronary eluting stents: A multidomain approach.

CIOFFI, MARGHERITA;DUBINI, GABRIELE ANGELO;MIGLIAVACCA, FRANCESCO
2010

Abstract

In this paper, starting from a consistent mathematical model, a novel computational approach is proposed for assessing some biomechanical effects on drug release from coronary drug-eluting stents (DESs), related to tissue properties, local hemodynamics and stent design. A multiscale and multidomain advection-diffusion model is formulated for describing drug dynamics in the polymeric substrate covering the stent, into the arterial wall, and in the vessel lumen. The model accounts for tissue microstructure (anisotropic drug diffusion, porosity, drug retention induced by resident proteins), macrostructure (plaque between stent and tissue), and local hemodynamics. In the case of hydrophobic taxus-based compounds, several numerical analyses have been carried out on simplified geometries by using finite element simulations, performing significant comparisons with other recent studies and highlighting general conclusions for assessing effectiveness of some modelling features as well as useful hints for optimizing drug delivery design and technology.
JOURNAL OF BIOMECHANICS
Drug-eluting stents; Restenosis; Drug delivery in porous medium; Local hemodynamics; Finite-element method; Multiscale and multidomain mass transfer
File in questo prodotto:
File Dimensione Formato  
des_2010.pdf

Accesso riservato

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 1.12 MB
Formato Adobe PDF
1.12 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11311/570141
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 69
  • ???jsp.display-item.citation.isi??? 62
social impact