We characterize the reproducing kernel Hilbert spaces whose elements are p-integrable functions in terms of the boundedness of the integral operator whose kernel is the reproducing kernel. Moreover, for p = 2, we show that the spectral decomposition of this integral operator gives a complete description of the reproducing kernel, extending the Mercer theorem.

Vector valued reproducing kernel Hilbert spaces of integrable functions and Mercer theorem

TOIGO, ALESSANDRO
2006-01-01

Abstract

We characterize the reproducing kernel Hilbert spaces whose elements are p-integrable functions in terms of the boundedness of the integral operator whose kernel is the reproducing kernel. Moreover, for p = 2, we show that the spectral decomposition of this integral operator gives a complete description of the reproducing kernel, extending the Mercer theorem.
2006
File in questo prodotto:
File Dimensione Formato  
AA_4_2006.pdf

Accesso riservato

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 392.02 kB
Formato Adobe PDF
392.02 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/569838
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 92
social impact