The effect of external friction, caused by medium viscosity, on the photoinduced translational motion in a rotaxane-based molecular shuttle 7 is investigated. The shuttle is successfully operated in solutions of poly(methacrylonitrile) (PMAN) of different molecular weights in MeCN and PrCN. The viscosity of the medium is tuned by changing the PMAN concentration. The rheological behavior of the polymer solution gives insight into the structure of the polymer solution on the microscopic scale. In PrCN, the entanglement regime is reached at lower concentration than in MeCN. This is also reflected by the effect on the shuttling: in the PrCN/PMAN system, a larger viscosity effect is observed compared to MeCN/PMAN. The shuttle is found to be slowed down in the polymer solutions but is still active at high viscosities. The observed retardation effect on the kinetics of shuttling in MeCN/PMAN and PrCN/PMAN can be correlated to the PMAN concentration through the hydrodynamic scaling model. The Stokes-Einstein relationship proves inadequate to correlate the shuttling rates to macroscopic viscosity, but the dependence of the shuttling rate on the bulk viscosity fits well to a commonly observed power-law relationship. The viscosity effect on the shuttling is found to be weak in all cases

Photoinduced Shuttling Dynamics of Rotaxanes in Viscous Polymer Solutions

GATTI, FRANCESCO GILBERTO;
2009-01-01

Abstract

The effect of external friction, caused by medium viscosity, on the photoinduced translational motion in a rotaxane-based molecular shuttle 7 is investigated. The shuttle is successfully operated in solutions of poly(methacrylonitrile) (PMAN) of different molecular weights in MeCN and PrCN. The viscosity of the medium is tuned by changing the PMAN concentration. The rheological behavior of the polymer solution gives insight into the structure of the polymer solution on the microscopic scale. In PrCN, the entanglement regime is reached at lower concentration than in MeCN. This is also reflected by the effect on the shuttling: in the PrCN/PMAN system, a larger viscosity effect is observed compared to MeCN/PMAN. The shuttle is found to be slowed down in the polymer solutions but is still active at high viscosities. The observed retardation effect on the kinetics of shuttling in MeCN/PMAN and PrCN/PMAN can be correlated to the PMAN concentration through the hydrodynamic scaling model. The Stokes-Einstein relationship proves inadequate to correlate the shuttling rates to macroscopic viscosity, but the dependence of the shuttling rate on the bulk viscosity fits well to a commonly observed power-law relationship. The viscosity effect on the shuttling is found to be weak in all cases
2009
SUPRAMOLECULAR CHEMISTRY
File in questo prodotto:
File Dimensione Formato  
advfunctmat.pdf

Accesso riservato

: Altro materiale allegato
Dimensione 360.72 kB
Formato Adobe PDF
360.72 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/565626
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact