This paper proves regularity of Lipschitz free boundaries of a two-phase problem for linear elliptic operators. The main strategy of proof involves a nontrivial extension of the work of L. A. Caffarelli in [Rev. Mat. Iberoamericana 3 (1987), no. 2, 139--162; MR0990856 (90d:35306)] and [Comm. Pure Appl. Math. 42 (1989), no. 1, 55--78; MR0973745 (90b:35246)]. It is carried out through several stages of perturbation analysis around the results in the constant coefficient case.

Two-phase problems for linear elliptic operators with variable coefficients: Lipschitz free boundaries are $C^{1,\gamma}$.

CERUTTI, MARIA CRISTINA;SALSA, SANDRO
2004-01-01

Abstract

This paper proves regularity of Lipschitz free boundaries of a two-phase problem for linear elliptic operators. The main strategy of proof involves a nontrivial extension of the work of L. A. Caffarelli in [Rev. Mat. Iberoamericana 3 (1987), no. 2, 139--162; MR0990856 (90d:35306)] and [Comm. Pure Appl. Math. 42 (1989), no. 1, 55--78; MR0973745 (90b:35246)]. It is carried out through several stages of perturbation analysis around the results in the constant coefficient case.
2004
Regularity of free boundary; two phase problems; elliptic operators
File in questo prodotto:
File Dimensione Formato  
Arch_Rat_Mech.pdf

Accesso riservato

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 199.22 kB
Formato Adobe PDF
199.22 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/562568
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 30
  • ???jsp.display-item.citation.isi??? 28
social impact