We give a Lie superalgebraic interpretation of the biHamiltonian structure of the known susy KdV equations. We show that he loop algebra of a Lie superalgebra carries a natural Poisson pencil, and we subsequently deduce the biHamiltonian structure of the susy KdV hierarchies by applying to loop superalgebras an appropriate reduction technique. This construction can be regarded as a superextension of the Drinfeld-Sokolov method for building a KdV-type hierarchy from a simple Lie algebra.

On the biHamiltonian structure of the supersymmetric KdV hierarchies. A Lie superalgebraic approach

MOROSI, CARLO;
1993-01-01

Abstract

We give a Lie superalgebraic interpretation of the biHamiltonian structure of the known susy KdV equations. We show that he loop algebra of a Lie superalgebra carries a natural Poisson pencil, and we subsequently deduce the biHamiltonian structure of the susy KdV hierarchies by applying to loop superalgebras an appropriate reduction technique. This construction can be regarded as a superextension of the Drinfeld-Sokolov method for building a KdV-type hierarchy from a simple Lie algebra.
1993
File in questo prodotto:
File Dimensione Formato  
susyKdVCMP.pdf

Accesso riservato

: Altro materiale allegato
Dimensione 2.36 MB
Formato Adobe PDF
2.36 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/560905
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact