We propose a bi-Hamiltonian formulation of the Euler equation for the free n-dimensional rigid body moving about a fixed point. This formulation lives on the `physical' space so(n), and is different from the bi-Hamiltonian formulation on the extended phase space sl(n), considered previously in the literature. Using the bi-Hamiltonian structure on so(n), we construct new recursion schemes for the Mishchenko and Manakov integrals of motion.

On the Euler equation: bi-Hamiltonian structures and integrals in involution

MOROSI, CARLO;
1996

Abstract

We propose a bi-Hamiltonian formulation of the Euler equation for the free n-dimensional rigid body moving about a fixed point. This formulation lives on the `physical' space so(n), and is different from the bi-Hamiltonian formulation on the extended phase space sl(n), considered previously in the literature. Using the bi-Hamiltonian structure on so(n), we construct new recursion schemes for the Mishchenko and Manakov integrals of motion.
File in questo prodotto:
File Dimensione Formato  
EulerLMP.pdf

Accesso riservato

: Altro materiale allegato
Dimensione 558.95 kB
Formato Adobe PDF
558.95 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/560900
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact