A method has been developed to estimate Origin Destination (OD) matrices using a neural network (NN) model and loop traffic data collected from a UK motorway site (M42) as the primary input. The estimated ODs were validated against matched vehicle number plate data derived from the ANPR (Automatic Number Plate Recognition) cameras which were installed at all the slip roads between junctions 3a and 7 of the motorway. Key research questions were: whether it is realistic to use the full loop data, whether particular features of the data influenced modelling success, whether data transformation could improve modelling performance through variance stabilization and whether individual ODs should be estimated separately or simultaneously. The method has been shown to work well and the best results were obtained using a square root transformation of the training data and individual models for each OD.

A Neural Network Approach to Motorway OD Matrix Estimation from Loop Counts

MUSSONE, LORENZO;
2010-01-01

Abstract

A method has been developed to estimate Origin Destination (OD) matrices using a neural network (NN) model and loop traffic data collected from a UK motorway site (M42) as the primary input. The estimated ODs were validated against matched vehicle number plate data derived from the ANPR (Automatic Number Plate Recognition) cameras which were installed at all the slip roads between junctions 3a and 7 of the motorway. Key research questions were: whether it is realistic to use the full loop data, whether particular features of the data influenced modelling success, whether data transformation could improve modelling performance through variance stabilization and whether individual ODs should be estimated separately or simultaneously. The method has been shown to work well and the best results were obtained using a square root transformation of the training data and individual models for each OD.
File in questo prodotto:
File Dimensione Formato  
JTSEIT_Mussone_Grant-Muller_Chen-2010.pdf

Accesso riservato

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 396.82 kB
Formato Adobe PDF
396.82 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/560158
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? ND
social impact