We consider the imbedding inequality || f ||_{L^r} <= S_{r,n,d} || f ||_{H^{n}}; H^{n}(R^d) is the Sobolev space (or Bessel potential space) of L^2 type and (integer or fractional) order n. We write down upper bounds for the constants S_{r, n, d}, using an argument previously applied in the literature in particular cases. We prove that the upper bounds computed in this way are in fact the sharp constants if (r=2 or) n > d/2, r=infinity, and exhibit the maximising functions. Furthermore, using convenient trial functions, we derive lower bounds on S_{r,n,d} for n > d/2, 2 < r < infinity; in many cases these are close to the previous upper bounds, as illustrated by a number of examples, thus characterizing the sharp constants with little uncertainty.

On the constants for some Sobolev imbeddings

MOROSI, CARLO;
2001-01-01

Abstract

We consider the imbedding inequality || f ||_{L^r} <= S_{r,n,d} || f ||_{H^{n}}; H^{n}(R^d) is the Sobolev space (or Bessel potential space) of L^2 type and (integer or fractional) order n. We write down upper bounds for the constants S_{r, n, d}, using an argument previously applied in the literature in particular cases. We prove that the upper bounds computed in this way are in fact the sharp constants if (r=2 or) n > d/2, r=infinity, and exhibit the maximising functions. Furthermore, using convenient trial functions, we derive lower bounds on S_{r,n,d} for n > d/2, 2 < r < infinity; in many cases these are close to the previous upper bounds, as illustrated by a number of examples, thus characterizing the sharp constants with little uncertainty.
2001
File in questo prodotto:
File Dimensione Formato  
Sobolev1.pdf

Accesso riservato

: Altro materiale allegato
Dimensione 925.15 kB
Formato Adobe PDF
925.15 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/558366
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact