Silk fibroin (SF)-based or -coated biomaterials hold structural and surface properties that render them suitable for biomedical applications. In this work, we investigated the behavior of four strains of normal human adult fibroblasts (HAFs) seeded onto polyurethane foam, uncoated (PUF) or SF coated (PUF/SF). HAF adhesion within 3 h to PUF/SF was 2-fold that of adhesion to PUF. After 30 days of incubation in vitro, 37% more HAFs had grown on PUF/SF than on PUF. Taking 105 cells as a basis for comparisons, HAFs on PUF/SF exhibited initially higher glucose consumption rates, but persistently lower glutamine uptake rates than on PUF, whereas the rates of lactate and interleukin 6 release and of extracellular assembly of type I collagen fibers were alike on either substrate. Moreover, HAFs on both PUF/SF and PUF never secreted any ELISA-assayable amounts of interleukin 1, tumor necrosis factor , and transforming growth factor 1. Hence, PUF/SF scaffolds embody a novel class of biomaterials favoring the adhesion, proliferation, and performance of specific metabolic tasks by HAFs without eliciting any concurrent secretion of the chief proinflammatory cytokines.

Silk Fibroin-Coated Three-Dimensional Polyurethane Scaffolds for Tissue Engineering: Interactions with Normal Human Fibroblasts

PETRINI, PAOLA;BOZZINI, SABRINA;FARE', SILVIA;
2003-01-01

Abstract

Silk fibroin (SF)-based or -coated biomaterials hold structural and surface properties that render them suitable for biomedical applications. In this work, we investigated the behavior of four strains of normal human adult fibroblasts (HAFs) seeded onto polyurethane foam, uncoated (PUF) or SF coated (PUF/SF). HAF adhesion within 3 h to PUF/SF was 2-fold that of adhesion to PUF. After 30 days of incubation in vitro, 37% more HAFs had grown on PUF/SF than on PUF. Taking 105 cells as a basis for comparisons, HAFs on PUF/SF exhibited initially higher glucose consumption rates, but persistently lower glutamine uptake rates than on PUF, whereas the rates of lactate and interleukin 6 release and of extracellular assembly of type I collagen fibers were alike on either substrate. Moreover, HAFs on both PUF/SF and PUF never secreted any ELISA-assayable amounts of interleukin 1, tumor necrosis factor , and transforming growth factor 1. Hence, PUF/SF scaffolds embody a novel class of biomaterials favoring the adhesion, proliferation, and performance of specific metabolic tasks by HAFs without eliciting any concurrent secretion of the chief proinflammatory cytokines.
2003
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/556820
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 71
  • ???jsp.display-item.citation.isi??? 59
social impact