Homogeneous, anisotropic and linearly elastic solids, subjected to a given state of strain (or stress), are considered. The problem dealt with consists in finding the mutual orientations of the principal directions of strain to the material symmetry axes in order to make the strain energy density stationary. Such relative orientations are described through three Euler's angles. When the stationarity problem is formulated for the generally anisotropic solid, it is shown that the necessary condition for stationarity demands for coaxiality of the stress and the strain tensors. From this feature, a procedure which leads to closed form solutions is proposed. To this end, tetragonal and cubic symmetry classes, together with transverse isotropy, are carefully dealt with, and for each case all the sets of Euler's angles corresponding to critical points of the energy density are found and discussed. For these symmetries, three material parameters are then defined, which play a crucial role in ordering the energy values corresponding to each solution.

### Stationarity of the strain energy density for some classes of anisotropic solids

#### Abstract

Homogeneous, anisotropic and linearly elastic solids, subjected to a given state of strain (or stress), are considered. The problem dealt with consists in finding the mutual orientations of the principal directions of strain to the material symmetry axes in order to make the strain energy density stationary. Such relative orientations are described through three Euler's angles. When the stationarity problem is formulated for the generally anisotropic solid, it is shown that the necessary condition for stationarity demands for coaxiality of the stress and the strain tensors. From this feature, a procedure which leads to closed form solutions is proposed. To this end, tetragonal and cubic symmetry classes, together with transverse isotropy, are carefully dealt with, and for each case all the sets of Euler's angles corresponding to critical points of the energy density are found and discussed. For these symmetries, three material parameters are then defined, which play a crucial role in ordering the energy values corresponding to each solution.
##### Scheda breve Scheda completa Scheda completa (DC)
2003
anisotropic elasticity; strain energy density; tetragonal symmetry; transverse isotropy; cubic symmetry
File in questo prodotto:
File
Rovati-Taliercio.pdf

Accesso riservato

: Altro materiale allegato
Dimensione 1.17 MB
Utilizza questo identificativo per citare o creare un link a questo documento: `https://hdl.handle.net/11311/556526`