Low energy plasma enhanced chemical vapour deposition (LEPECVD) is a relatively new growth method, which has been used to create high quality epitaxial silicon germanium material on conventional Si(001) wafers. This material is eminently suitable for electronic devices. The best performance for n-type and p-type conduction is seen in tensile-strained Si and compressively strained Ge quantum wells, respectively. Since such quantum wells cannot be grown directly on a silicon substrate, a virtual substrate (VS) is first grown. The reactive conditions within the plasma make it possible to grow the VS at rates of up to 10 nms−1 independent of substrate temperature. The quantum wells were grown using a lower plasma intensity, at growth rates of approximately 0.3 nms−1. The electrical properties of the material compare very well with molecular beam epitaxy (MBE) references, and hybrid material where the buffer is grown by LEPECVD and the electrically active layers are grown by MBE. In addition, the structural quality of the material is analysed by atomic force microscopy, transmission electron microscopy and defect etching.

High quality SiGe electronic material grown by low energy plasma enhanced chemical vapour deposition

CHRASTINA, DANIEL;ISELLA, GIOVANNI;BOLLANI, MONICA;
2004-01-01

Abstract

Low energy plasma enhanced chemical vapour deposition (LEPECVD) is a relatively new growth method, which has been used to create high quality epitaxial silicon germanium material on conventional Si(001) wafers. This material is eminently suitable for electronic devices. The best performance for n-type and p-type conduction is seen in tensile-strained Si and compressively strained Ge quantum wells, respectively. Since such quantum wells cannot be grown directly on a silicon substrate, a virtual substrate (VS) is first grown. The reactive conditions within the plasma make it possible to grow the VS at rates of up to 10 nms−1 independent of substrate temperature. The quantum wells were grown using a lower plasma intensity, at growth rates of approximately 0.3 nms−1. The electrical properties of the material compare very well with molecular beam epitaxy (MBE) references, and hybrid material where the buffer is grown by LEPECVD and the electrically active layers are grown by MBE. In addition, the structural quality of the material is analysed by atomic force microscopy, transmission electron microscopy and defect etching.
2004
Silicon–germanium (SiGe), Virtual substrate, Relaxed buffer, MODFET
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/555951
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 9
social impact