Two compounds, derivatives of 1,4-diazobicyclo[2,2,2]octane (DABCO), have been evaluated as potential quenchers of silanol interactions with peptides and proteins during their capillary zone electrophoresis (CZE) separations. They are: 1-(4-iodobutyl)4-aza-1-azoniabicyclo[2,2,2]octane iodide (M7C4I) and 1,4-didecyl-1,4-diazoniabicyclo [2,2,2]octane dibromide (C10M7C10). The first compound is known to react with the wall, by forming a covalent bond via alkylation of silanols. On the contrary, the second one (C10M7C10) can only loosely interact with silica due to lack of reactive iodine and to a much too short distance (a C2) between the two quaternary nitrogens. Very good peptide maps of protein digests can be obtained in isoelectric glutamic acid (Glu) buffer, at pH 3.52 by utilizing the M7C4I. However, in the case of total tissue extracts, excellent resolution is obtained only with the first eluting part of the analyte spectrum (i.e., peptides and smaller proteins). With larger proteins, interaction with the wall and loss of resolution is experienced. When using the C10M7C10, good resolution of di- and tripeptides is obtained, while a loss of resolution is observed with entire protein digest. M7C4I does not seem to interact with the peptide/protein analytes, and simply repels them from the wall via its positive charges; it is believed that disalt (C10M7C10) acts by interacting with the same compounds, possibly by forming micelles in solution

Peptide and protein separations by capillary electrophoresis in the presence of mono- and diquaternarized diamines

SEBASTIANO, ROBERTO;CITTERIO, ATTILIO;RIGHETTI, PIERGIORGIO;
2004-01-01

Abstract

Two compounds, derivatives of 1,4-diazobicyclo[2,2,2]octane (DABCO), have been evaluated as potential quenchers of silanol interactions with peptides and proteins during their capillary zone electrophoresis (CZE) separations. They are: 1-(4-iodobutyl)4-aza-1-azoniabicyclo[2,2,2]octane iodide (M7C4I) and 1,4-didecyl-1,4-diazoniabicyclo [2,2,2]octane dibromide (C10M7C10). The first compound is known to react with the wall, by forming a covalent bond via alkylation of silanols. On the contrary, the second one (C10M7C10) can only loosely interact with silica due to lack of reactive iodine and to a much too short distance (a C2) between the two quaternary nitrogens. Very good peptide maps of protein digests can be obtained in isoelectric glutamic acid (Glu) buffer, at pH 3.52 by utilizing the M7C4I. However, in the case of total tissue extracts, excellent resolution is obtained only with the first eluting part of the analyte spectrum (i.e., peptides and smaller proteins). With larger proteins, interaction with the wall and loss of resolution is experienced. When using the C10M7C10, good resolution of di- and tripeptides is obtained, while a loss of resolution is observed with entire protein digest. M7C4I does not seem to interact with the peptide/protein analytes, and simply repels them from the wall via its positive charges; it is believed that disalt (C10M7C10) acts by interacting with the same compounds, possibly by forming micelles in solution
2004
File in questo prodotto:
File Dimensione Formato  
555474.pdf

Accesso riservato

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 115.34 kB
Formato Adobe PDF
115.34 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/555474
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 13
social impact