In this article we propose a semi-automatic approach to the detection of linear scattering objects in geo-radar data sets, based on the 3D Radon Transform. The method that we propose is iterative, as each detected object is removed from the data set before the next iteration, in order to avoid mutual interference or masking. In addition, the algorithm is able to further analyze the data set in a local fashion in order to eliminate spurious targets from the set of lines of maximum consensus. Our algorithm proved robust and reliable even in presence of data affected by heavy noise, artifacts and other undesired scattering objects. Although the application scenario of the proposed algorithm is that of the analysis of data sets generated by a Ground Penetrating Radar, the method is general enough to apply to any problems where linear objects needs to be identified and localized in volumetric data.

Detection of linear objects in GPR data

DELL'ACQUA, ANDREA;SARTI, AUGUSTO;TUBARO, STEFANO;ZANZI, LUIGI
2004-01-01

Abstract

In this article we propose a semi-automatic approach to the detection of linear scattering objects in geo-radar data sets, based on the 3D Radon Transform. The method that we propose is iterative, as each detected object is removed from the data set before the next iteration, in order to avoid mutual interference or masking. In addition, the algorithm is able to further analyze the data set in a local fashion in order to eliminate spurious targets from the set of lines of maximum consensus. Our algorithm proved robust and reliable even in presence of data affected by heavy noise, artifacts and other undesired scattering objects. Although the application scenario of the proposed algorithm is that of the analysis of data sets generated by a Ground Penetrating Radar, the method is general enough to apply to any problems where linear objects needs to be identified and localized in volumetric data.
2004
Radon Transform; Hough Transform; Line detection
File in questo prodotto:
File Dimensione Formato  
SP04.pdf

Accesso riservato

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 878.03 kB
Formato Adobe PDF
878.03 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/555403
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 45
  • ???jsp.display-item.citation.isi??? 36
social impact