In this paper, the problem of automated aircraft conflict prediction is studied for two-aircraft midair encounters. A model is introduced to predict the aircraft positions along some look-ahead time horizon, during which each aircraft is trying to follow a prescribed flight plan despite the presence of additive wind perturbations to its velocity. A spatial correlation structure is assumed for the wind perturbations such that the closer the two aircraft, the stronger the correlation between the perturbations to their velocities. Using this model, a method is introduced to evaluate the criticality of the encounter situation by estimating the probability of conflict, namely, the probability that the two aircraft come closer than aminimum allowed distance at some time instant during the look-ahead time horizon. The proposed method is based on the introduction of a Markov chain approximation of the stochastic processes modeling the aircraft motions. Several generalizations of the proposed approach are also discussed.

Aircraft conflict prediction in presence of a spatially correlated wind field.

PRANDINI, MARIA;
2005-01-01

Abstract

In this paper, the problem of automated aircraft conflict prediction is studied for two-aircraft midair encounters. A model is introduced to predict the aircraft positions along some look-ahead time horizon, during which each aircraft is trying to follow a prescribed flight plan despite the presence of additive wind perturbations to its velocity. A spatial correlation structure is assumed for the wind perturbations such that the closer the two aircraft, the stronger the correlation between the perturbations to their velocities. Using this model, a method is introduced to evaluate the criticality of the encounter situation by estimating the probability of conflict, namely, the probability that the two aircraft come closer than aminimum allowed distance at some time instant during the look-ahead time horizon. The proposed method is based on the introduction of a Markov chain approximation of the stochastic processes modeling the aircraft motions. Several generalizations of the proposed approach are also discussed.
2005
AUT
File in questo prodotto:
File Dimensione Formato  
555011.pdf

Accesso riservato

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 452.16 kB
Formato Adobe PDF
452.16 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/555011
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact