The drawbacks of state-of-the-art heart valve prostheses lead researchers to explore the prospect of using tissue-engineered constructs as possible valve substitutes. It is widely accepted that the mechanical properties of the construct are improved with mechanical stimulation during in vitro growth. We designed a new dynamic bioreactor with the perspective of using decellularized valve homografts as scaffolds in order to produce tissue-engineered valve substitutes. The design guidelines were (a) compatibility with the procedures for the treatment of homografts; (b) delivery of finely controlled pulsatile pressure loads, which induce strain stimuli that may drive cells toward repopulation of and integration with the natural scaffold; and (c) monitoring the construct’s biomechanical status through a comprehensive index, i.e., its compliance. The handling needs during the setup of the homograft and the use of the bioreactor were minimized. The bioreactor and its automated control system underwent tests with a compliant phantom valve. The estimated compliances are in good agreement with the measured ones. Tests were also carried out with porcine aortic samples in order to assess the hydrodynamic and biomechanical reliability. In the future, monitoring the construct’s compliance might represent a key factor in controlling the recellularization of the valve homografts, which provides awareness of the construct’s biomechanical status by real-time, non-destructive, and non-invasive means.

A Bioreactor with Compliance Monitoring for Heart Valve Grafts.

VISMARA, RICCARDO;SONCINI, MONICA;REDAELLI, ALBERTO CESARE LUIGI;FIORE, GIANFRANCO BENIAMINO
2010-01-01

Abstract

The drawbacks of state-of-the-art heart valve prostheses lead researchers to explore the prospect of using tissue-engineered constructs as possible valve substitutes. It is widely accepted that the mechanical properties of the construct are improved with mechanical stimulation during in vitro growth. We designed a new dynamic bioreactor with the perspective of using decellularized valve homografts as scaffolds in order to produce tissue-engineered valve substitutes. The design guidelines were (a) compatibility with the procedures for the treatment of homografts; (b) delivery of finely controlled pulsatile pressure loads, which induce strain stimuli that may drive cells toward repopulation of and integration with the natural scaffold; and (c) monitoring the construct’s biomechanical status through a comprehensive index, i.e., its compliance. The handling needs during the setup of the homograft and the use of the bioreactor were minimized. The bioreactor and its automated control system underwent tests with a compliant phantom valve. The estimated compliances are in good agreement with the measured ones. Tests were also carried out with porcine aortic samples in order to assess the hydrodynamic and biomechanical reliability. In the future, monitoring the construct’s compliance might represent a key factor in controlling the recellularization of the valve homografts, which provides awareness of the construct’s biomechanical status by real-time, non-destructive, and non-invasive means.
2010
File in questo prodotto:
File Dimensione Formato  
Vismara et al - ABME 2010 - print.pdf

Accesso riservato

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 532.44 kB
Formato Adobe PDF
532.44 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/554890
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 26
  • ???jsp.display-item.citation.isi??? 21
social impact