This paper presents a method for obstructive sleep apnea (OSA) screening based on the electrocardiogram (ECG) recording during sleep. OSA is a common sleep disorder produced by repetitive occlusions in the upper airways and this phenomenon can usually be observed also in other peripheral systems such as the cardiovascular system. Then the extraction ofECGcharacteristics, such as the RR intervals and the area of the QRS complex, is useful to evaluate the sleep apnea in noninvasive way. In the presented analysis, 50 recordings coming from the apnea Physionet database were used; data were split into two sets, the training and the testing set, each of which was composed of 25 recordings. A bivariate timevarying autoregressive model (TVAM) was used to evaluate beatby- beat power spectral densities for both the RR intervals and the QRS complex areas. Temporal and spectral features were changed on a minute-by-minute basis since apnea annotations where given with this resolution. The training set consisted of 4950 apneic and 7127 nonapneic minutes while the testing set had 4428 apneic and 7927 nonapneic minutes. The K-nearest neighbor (KNN) and neural networks (NN) supervised learning classifiers were employed to classify apnea and non apnea minutes. A sequential forward selection was used to select the best feature subset in a wrapper setting.With ten features the KNN algorithm reached an accuracy of 88%, sensitivity equal to 85%, and specificity up to 90%, while NN reached accuracy equal to 88%, sensitivity equal to 89% and specificity equal to 86%. In addition to the minute-by-minute classification, the results showed that the two classifiers are able to separate entirely (100%) the normal recordings from the apneic recordings. Finally, an additional database with eight recordings annotated as normal or apneic was used to test again the classifiers. Also in this new dataset, the results showed a complete separation between apneic and normal recordings.

Sleep Apnea Screening by Autoregressive Modelsfrom a Single ECG Lead

BIANCHI, ANNA MARIA;MATTEUCCI, MATTEO;CERUTTI, SERGIO;
2009

Abstract

This paper presents a method for obstructive sleep apnea (OSA) screening based on the electrocardiogram (ECG) recording during sleep. OSA is a common sleep disorder produced by repetitive occlusions in the upper airways and this phenomenon can usually be observed also in other peripheral systems such as the cardiovascular system. Then the extraction ofECGcharacteristics, such as the RR intervals and the area of the QRS complex, is useful to evaluate the sleep apnea in noninvasive way. In the presented analysis, 50 recordings coming from the apnea Physionet database were used; data were split into two sets, the training and the testing set, each of which was composed of 25 recordings. A bivariate timevarying autoregressive model (TVAM) was used to evaluate beatby- beat power spectral densities for both the RR intervals and the QRS complex areas. Temporal and spectral features were changed on a minute-by-minute basis since apnea annotations where given with this resolution. The training set consisted of 4950 apneic and 7127 nonapneic minutes while the testing set had 4428 apneic and 7927 nonapneic minutes. The K-nearest neighbor (KNN) and neural networks (NN) supervised learning classifiers were employed to classify apnea and non apnea minutes. A sequential forward selection was used to select the best feature subset in a wrapper setting.With ten features the KNN algorithm reached an accuracy of 88%, sensitivity equal to 85%, and specificity up to 90%, while NN reached accuracy equal to 88%, sensitivity equal to 89% and specificity equal to 86%. In addition to the minute-by-minute classification, the results showed that the two classifiers are able to separate entirely (100%) the normal recordings from the apneic recordings. Finally, an additional database with eight recordings annotated as normal or apneic was used to test again the classifiers. Also in this new dataset, the results showed a complete separation between apneic and normal recordings.
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING
File in questo prodotto:
File Dimensione Formato  
Mendezetal2009.pdf

Accesso riservato

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 423 kB
Formato Adobe PDF
423 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11311/554846
Citazioni
  • ???jsp.display-item.citation.pmc??? 9
  • Scopus 111
  • ???jsp.display-item.citation.isi??? 91
social impact