This work deals with the problem of computing the inverse dynamics of complex constrained mechanical systems for real-time control applications. The main goal is the control of robotic systems using model-based schemes in which the inverse model itself is obtained using a general purpose multibody software, exploiting the redundant coordinate formalism. The resulting control scheme is essentially equivalent to a classical computed torque control, commonly used in robotics applications. This work proposes to use modern general-purpose multibody software to compute the inverse dynamics of complex rigid mechanisms in an efficient way, so that it suits the requirements of realistic real-time applications as well. This task can be very difficult, since it involves a higher number of equations than the relative coordinates approach. The latter is believed to be less general, and may suffer from topology limitations. The use of specialized linear algebra solvers makes this kind of control algorithms usable in real-time for mechanism models of realistic complexity. Numerical results from the simulation of practical applications are presented, consisting in a “delta” robot and a bio-mimetic 11 degrees of freedom manipulator controlled using the same software and the same algorithm.

Real-Time Inverse Dynamics Control of Parallel Manipulators Using General-Purpose Multibody Software

FUMAGALLI, ALESSANDRO;MASARATI, PIERANGELO
2009-01-01

Abstract

This work deals with the problem of computing the inverse dynamics of complex constrained mechanical systems for real-time control applications. The main goal is the control of robotic systems using model-based schemes in which the inverse model itself is obtained using a general purpose multibody software, exploiting the redundant coordinate formalism. The resulting control scheme is essentially equivalent to a classical computed torque control, commonly used in robotics applications. This work proposes to use modern general-purpose multibody software to compute the inverse dynamics of complex rigid mechanisms in an efficient way, so that it suits the requirements of realistic real-time applications as well. This task can be very difficult, since it involves a higher number of equations than the relative coordinates approach. The latter is believed to be less general, and may suffer from topology limitations. The use of specialized linear algebra solvers makes this kind of control algorithms usable in real-time for mechanism models of realistic complexity. Numerical results from the simulation of practical applications are presented, consisting in a “delta” robot and a bio-mimetic 11 degrees of freedom manipulator controlled using the same software and the same algorithm.
2009
Inverse dynamics; Control; Robotics; Parallel manipulators; Real-time
File in questo prodotto:
File Dimensione Formato  
RealTime.pdf

Accesso riservato

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 1.38 MB
Formato Adobe PDF
1.38 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/554154
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 18
social impact