A classical theorem by Block and Levin (Block, H. D., S. A. Levin. 1970. On the boundedness of an iterative procedure for solving a system of linear inequalities. Proc. Amer. Math. Soc. 26 229–235) states that certain variants of the relaxation method for solving systems of linear inequalities generate bounded sequences of intermediate solutions, even when applied to infeasible systems. Using a new approach, we prove a more general version of this result and answer an old open problem of quantifying the bound as a function of the input data.

Boundedness theorems for the relaxation method

AMALDI, EDOARDO;
2005-01-01

Abstract

A classical theorem by Block and Levin (Block, H. D., S. A. Levin. 1970. On the boundedness of an iterative procedure for solving a system of linear inequalities. Proc. Amer. Math. Soc. 26 229–235) states that certain variants of the relaxation method for solving systems of linear inequalities generate bounded sequences of intermediate solutions, even when applied to infeasible systems. Using a new approach, we prove a more general version of this result and answer an old open problem of quantifying the bound as a function of the input data.
2005
AUT
File in questo prodotto:
File Dimensione Formato  
Relaxation-method-MOR-05.pdf

Accesso riservato

: Pre-Print (o Pre-Refereeing)
Dimensione 222.35 kB
Formato Adobe PDF
222.35 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/553958
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 5
social impact