We consider a convection-diffusion-reaction problem, and we analyze a stabilized mixed finite-volume scheme introduced in [1]. The scheme is presented in the format of discontinuous Galerkin methods, and error bounds are given, proving O(h^1/2) convergence in the L2-norm for the scalar variable, which is approximated with piecewise constant elements.

Stability and error analysis of mixed finite volume methods for advection dominated problems

MICHELETTI, STEFANO;SACCO, RICCARDO
2006-01-01

Abstract

We consider a convection-diffusion-reaction problem, and we analyze a stabilized mixed finite-volume scheme introduced in [1]. The scheme is presented in the format of discontinuous Galerkin methods, and error bounds are given, proving O(h^1/2) convergence in the L2-norm for the scalar variable, which is approximated with piecewise constant elements.
2006
File in questo prodotto:
File Dimensione Formato  
Comput_Math_Appl_2006.pdf

Accesso riservato

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 898.75 kB
Formato Adobe PDF
898.75 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/553491
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 13
social impact