Let k be an algebraically closed field and let $ Hilb^{aG}_d (P^{d−2}_k ) $ be the open locus inside the Hilbert scheme $ Hilb_d (P^{d−2}_k ) $ corresponding to arithmetically Gorenstein subschemes.We prove the irreducibility and characterize the singularities of $ Hilb^{aG}_6 (P^4_k).$ In order to achieve these results we also classify all Artinian, Gorenstein, not necessarily graded, k-algebras up to degree 6. Moreover, we describe the loci in $ Hilb^{aG}_6 (P^4_k) $ obtained via some geometric construction. Finally we prove the obstructedness of some families of points in $ Hilb^{aG}_d (P^{d−2}_k ) $ for each $ d \geq 6.$

On some Gorenstein loci in Hilb_6(P^4_k)

NOTARI, ROBERTO
2007-01-01

Abstract

Let k be an algebraically closed field and let $ Hilb^{aG}_d (P^{d−2}_k ) $ be the open locus inside the Hilbert scheme $ Hilb_d (P^{d−2}_k ) $ corresponding to arithmetically Gorenstein subschemes.We prove the irreducibility and characterize the singularities of $ Hilb^{aG}_6 (P^4_k).$ In order to achieve these results we also classify all Artinian, Gorenstein, not necessarily graded, k-algebras up to degree 6. Moreover, we describe the loci in $ Hilb^{aG}_6 (P^4_k) $ obtained via some geometric construction. Finally we prove the obstructedness of some families of points in $ Hilb^{aG}_d (P^{d−2}_k ) $ for each $ d \geq 6.$
2007
Hilbert scheme; Arithmetically Gorenstein subscheme; Artinian algebra
File in questo prodotto:
File Dimensione Formato  
on-some-gorenstein-lociin-Hilb_6(P^4).pdf

Accesso riservato

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 346.79 kB
Formato Adobe PDF
346.79 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/552440
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 15
social impact