In this paper an experimental-numerical method, centred on flat-jack tests, is presented for the identification of local stress states and possibly deteriorated elastic properties of concrete in existing dams. It is shown herein that the synergistic combination of new pattern of flat-jack experiment, computer simulation of the test (by conventional finite elements) and inverse analysis allows to exploit experimental data more effectively than by the traditional procedure, and to achieve more information on material properties. In fact, at suitably chosen locations on the free surface of the monitored dam, all the components of local (plane) stress state and the elastic moduli in two orthogonal directions (including shear stiffness) can be estimated by the proposed method. The inverse problem in point is formulated as a sequence of two parameter identifications, i.e. as a bilevel (in the sense of Stackelberg) mathematical programming problem. The solution in a stochastic context is achieved by means of a modified Bayes technique, allowing to obtain, in a “batch” (non sequential) way, parameter estimates endowed with a covariance matrix which quantifies their degrees of confidence and correlations

Flat-jack tests and inverse analysis for the identification of stress states and elastic properties in concrete dams

FEDELE, ROBERTO;MAIER, GIULIO
2007

Abstract

In this paper an experimental-numerical method, centred on flat-jack tests, is presented for the identification of local stress states and possibly deteriorated elastic properties of concrete in existing dams. It is shown herein that the synergistic combination of new pattern of flat-jack experiment, computer simulation of the test (by conventional finite elements) and inverse analysis allows to exploit experimental data more effectively than by the traditional procedure, and to achieve more information on material properties. In fact, at suitably chosen locations on the free surface of the monitored dam, all the components of local (plane) stress state and the elastic moduli in two orthogonal directions (including shear stiffness) can be estimated by the proposed method. The inverse problem in point is formulated as a sequence of two parameter identifications, i.e. as a bilevel (in the sense of Stackelberg) mathematical programming problem. The solution in a stochastic context is achieved by means of a modified Bayes technique, allowing to obtain, in a “batch” (non sequential) way, parameter estimates endowed with a covariance matrix which quantifies their degrees of confidence and correlations
Materials mechanics
Diagnostics ·
Non-destructive tests
Parameter identification
File in questo prodotto:
File Dimensione Formato  
5_Fedele_Maier_Meccanica_2007.pdf

Accesso riservato

: Publisher’s version
Dimensione 472.85 kB
Formato Adobe PDF
472.85 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11311/552303
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 24
  • ???jsp.display-item.citation.isi??? 20
social impact