A new family of direct spectral solvers for the 3D Helmholtz equation in a spherical gap and inside a sphere for nonaxisymmetric problems is presented. A variational formulation (no collocation) is adopted, based on the Fourier expansion and the associated Legendre functions to represent the angular dependence over the sphere and using basis functions generated by Legendre or Jacobi polynomials to represent the radial structure of the solution. In the present method, boundary conditions on the polar axis and at the sphere center are not required and never mentioned, by construction. The spectral solution of the vector Dirichlet problem is also considered, by employing a transformation that uncouples the spherical components of the Fourier modes and that is implemented here for the first time. The condition numbers of the matrices involved in the scalar solvers are computed and the spectral convergence of all the proposed solution algorithms is verified by numerical tests.

Spectral Solvers for Spherical Elliptic Problems

AUTERI, FRANCO;QUARTAPELLE PROCOPIO, LUIGI
2007-01-01

Abstract

A new family of direct spectral solvers for the 3D Helmholtz equation in a spherical gap and inside a sphere for nonaxisymmetric problems is presented. A variational formulation (no collocation) is adopted, based on the Fourier expansion and the associated Legendre functions to represent the angular dependence over the sphere and using basis functions generated by Legendre or Jacobi polynomials to represent the radial structure of the solution. In the present method, boundary conditions on the polar axis and at the sphere center are not required and never mentioned, by construction. The spectral solution of the vector Dirichlet problem is also considered, by employing a transformation that uncouples the spherical components of the Fourier modes and that is implemented here for the first time. The condition numbers of the matrices involved in the scalar solvers are computed and the spectral convergence of all the proposed solution algorithms is verified by numerical tests.
2007
File in questo prodotto:
File Dimensione Formato  
SpectralSolvers.pdf

Accesso riservato

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 361.57 kB
Formato Adobe PDF
361.57 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/552270
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 7
social impact